

Lecture Notes in Computer Science 3730
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefano Spaccapietra (Ed.)

Journal on
Data
Semantics IV

13

Volume Editor

Stefano Spaccapietra
EPFL-IC-IIF-LBD, INJ 236 (Bâtiment INJ), Station 14
1015 Lausanne, Switzerland
E-mail: stefano.spaccapietra@epfl.ch

Library of Congress Control Number: 2005937594

CR Subject Classification (1998): H.2, H.3, I.2, H.4, C.2

ISSN 0302-9743
ISBN-10 3-540-31001-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31001-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11603412 06/3142 5 4 3 2 1 0

The LNCS Journal on Data Semantics

Computerized information handling has changed its focus from centralized data
management systems to decentralized data exchange facilities. Modern distribution
channels, such as high-speed Internet networks and wireless communication
infrastructure, provide reliable technical support for data distribution and data access,
materializing the new, popular idea that data may be available to anybody, anywhere,
anytime. However, providing huge amounts of data on request often turns into a
counterproductive service, making the data useless because of poor relevance or
inappropriate level of detail. Semantic knowledge is the essential missing piece that
allows the delivery of information that matches user requirements. Semantic
agreement, in particular, is essential to meaningful data exchange.

Semantic issues have long been open issues in data and knowledge management.
However, the boom in semantically poor technologies, such as the Web and XML,
has boosted renewed interest in semantics. Conferences on the Semantic Web, for
instance, attract crowds of participants, while ontologies on their own have become a
hot and popular topic in the database and artificial intelligence communities.

Springer's LNCS Journal on Data Semantics aims at providing a highly visible
dissemination channel for the most remarkable work that in one way or another
addresses research and development on issues related to the semantics of data. The
target domain ranges from theories supporting the formal definition of semantic
content to innovative domain-specific application of semantic knowledge. This
publication channel should be of the highest interest to researchers and advanced
practitioners working on the Semantic Web, interoperability, mobile information
services, data warehousing, knowledge representation and reasoning, conceptual
database modeling, ontologies, and artificial intelligence.

Topics of relevance to this journal include:

• Semantic interoperability, semantic mediators
• Ontologies
• Ontology, schema and data integration, reconciliation and alignment
• Multiple representations, alternative representations
• Knowledge representation and reasoning
• Conceptualization and representation
• Multimodel and multiparadigm approaches
• Mappings, transformations, reverse engineering
• Metadata
• Conceptual data modeling
• Integrity description and handling
• Evolution and change
• Web semantics and semi-structured data
• Semantic caching
• Data warehousing and semantic data mining
• Spatial, temporal, multimedia and multimodal semantics

Preface VI

• Semantics in data visualization
• Semantic services for mobile users
• Supporting tools
• Applications of semantic-driven approaches

These topics are to be understood as specifically related to semantic issues.

Contributions submitted to the journal and dealing with semantics of data will be
considered even if they are not within the topics in the list.

While the physical appearance of the journal issues is like the books from the well-
known Springer LNCS series, the mode of operation is that of a journal.
Contributions can be freely submitted by authors and are reviewed by the Editorial
Board. Contributions may also be invited, and nevertheless carefully reviewed, as in
the case for issues that contain extended versions of the best papers from major
conferences addressing data semantics issues. Special issues, focusing on a specific
topic, are coordinated by guest editors once the proposal for a special issue is
accepted by the Editorial Board. Finally, it is also possible that a journal issue be
devoted to a single text.

The journal published its first volume in 2003 (LNCS 2800), its second volume at
the beginning of 2005 (LNCS 3360), and its third volume in Summer 2005 (LNCS
3534). The first two volumes are special issues composed of selected extended
versions of the best conference papers. The third volume is a special issue on
“Semantic-Based Geographical Information Systems”, coordinated by guest editor
Prof. Esteban Zimányi. This fourth volume is the first “normal” volume, consisting of
spontaneous submissions on any of the topics of interest to the journal. Currently
planned volumes include a special issue on emergent semantics.

The Editorial Board comprises one Editor-in-Chief (with overall responsibility)
and several members. The Editor-in-Chief has a four-year mandate to run the journal.
Members of the board have a three-year mandate. Mandates are renewable. More
members may be added to the board as appropriate.

We are happy to welcome both readers and authors, and hope we will share this
privileged contact for a long time.

 Stefano Spaccapietra
 Editor-in-Chief
 http://lbdwww.epfl.ch/e/Springer/

JoDS Volume IV - Preface

This fourth JoDS volume is the outcome of the selection of papers spontaneously
submitted to the journal, in particular in response to a Call for Papers issued on July
17, 2004. The call invited submissions on any topic that falls within the scope of the
journal.

Altogether, 38 submissions were reviewed. After the first round of reviews, 24
submissions were asked to perform a major revision and resubmit. Most of these were
actually resubmitted and went through a second round of reviews, with the same
reviewers as allocated for the first round. Eventually, 10 papers were accepted for
publication, after some last modifications suggested by the reviewers.

Accepted papers cover a wide range of topics, from traditional data semantics
(information modeling, data model transformation, knowledge representation, data
and schema integration) to the newest trends (multimedia, Semantic Web annotation,
information extraction, and knowledge discovery).

A new Call for Papers is open at the moment for a volume to appear in 2006. We
are looking forward to your contributions.

 Stefano Spaccapietra
 Editor-in-Chief

Preface VIII

In Memoriam

Prof. Maurizio Panti

On July 3, 2005, at 9:45AM, Prof. Maurizio Panti, Head of the Department of
Computer, Management and Automation Engineering at the Polytechnic University of
Marche, passed away.

Approximately seven months earlier, he had been diagnosed with a late-stage
aggressive cancer. In this brief period of illness, he never stopped his activities,
showing devotion to his work and students and a strong will power that will be an
example for all of us. He spent his final hours surrounded by family and friends.

Prof. Maurizio Panti was full professor of Information Systems and Data Bases. He
promoted the growth of informatics both in academia, contributing to the foundation
of the Informatics Institute, which then developed into the present department, and in
the regional economic arena, also serving as a member in the Scientific and Technical
Board for the Regional Information System.

His loss will be greatly felt by all those who knew and worked with him.

Prof. Hongjun Lu

Prof. Hongjun Lu was a world-renowned researcher who served the database
community with dedication and distinction in various capacities over the years. He
was a trustee of the VLDB Endowment, a member of the ACM SIGMOD Advisory
Board (1998–2002), an associate editor of IEEE Transactions on Knowledge and Data
Engineering (TKDE), Chair of the Steering Committee of the International
Conference on Web-Age Information Management (WAIM), and Co-chair (1998-
2001) and Chair (2001-2003) of the Steering Committee of Pacific-Asia Conference
of Knowledge Discovery and Data Mining (PAKDD). In December 2004, the China
Computer Federation Database Society honored him with a Contribution Award and,
just recently, he was honored with this year's inaugural PAKDD Distinguished
Contribution Award.

His passing is a great loss not only to the China Database Society but also to the
International Database Society. He has made sustained and outstanding contributions
to the international database research community as well as to database research.

Organization

External Reviewers

All Editorial Board members contributed reviews for the selection of the submissions.
In addition, a number of colleagues helped us in this reviewing task. We would like to
express here our gratitude for their cooperation and our warmest thanks for the job
they did.

Bettina Berendt

Sonia Bergamaschi

Claudio Bettini

Mokrane Bouzeghoub

Anita Coleman

Jos De Bruin

Flavio De Paoli

Giovanni Denaro

Ying Ding

Gillian Dobbie

Anastasios D. Doulamis

Oleksandr Drutskyy

Birte Glimm

Sven Hartmann

Georges Hébrail

Martin Hepp

Jane Hunter

Mustafa Jarrar

Roland Kaschek

Evgeny Zolin

Yehuda Koren

Mong Li Lee

Lei Li

Xiaonan Lu

R. Manmatha

Andrea Maurino

Rym Mili

Moira Norrie

Axel Polleres

Helen Purchase

Brian Roark

Ingo Schmitt

Richard Smiraglia

Peter Spyns

Paolo Terenziani

Christelle Vangenot

Michalis Vazirgiannis

James Z. Wang

X. Sean Wang

Organization X

JoDS Editorial Board

Carlo Batini, Università di Milano Bicocca, Italy

Tiziana Catarci, Università di Roma La Sapienza, Italy

Lois Delcambre, Portland State University, USA

David W. Embley, Brigham Young University, USA

Jerome Euzenat, INRIA Rhône-Alpes, France

Dieter Fensel, University of Innsbruck, Austria

Nicola Guarino, National Research Council, Italy

Jean-Luc Hainaut, FUNDP Namur, Belgium

Ian Horrocks, University of Manchester, UK

Larry Kerschberg, George Mason University, USA

Maurizio Lenzerini, Università di Roma La Sapienza, Italy

Tok Wang Ling, National University of Singapore, Singapore

Salvatore T. March, Vanderbilt University, USA

Robert Meersman, Vrije Universiteit Brussel (VUB), Belgium

John Mylopoulos, University of Toronto, Canada

Shamkant B. Navathe, Georgia Institute of Technology, USA

Antoni Olivé, Universitat Politècnica de Catalunya, Spain

José Palazzo M. de Oliveira, Universidade Federal do Rio Grande do Sul, Brazil

Christine Parent, Université de Lausanne, Switzerland

John Roddick, Flinders University, Australia

Klaus-Dieter Schewe, Massey University, New Zealand

Bernhard Thalheim, Brandenburg University of Technology, Germany

Yair Wand, University of British Columbia, Canada

Esteban Zimányi, Université Libre de Bruxelles (ULB), Belgium

Table of Contents

Generic Relationships in Information Modeling
Mohamed Dahchour, Alain Pirotte, Esteban Zimányi 1

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta
Objects

Sonja Zillner, Werner Winiwarter . 35

Comparing and Transforming Between Data Models Via an
Intermediate Hypergraph Data Model

Michael Boyd, Peter McBrien . 69

iASA: Learning to Annotate the Semantic Web
Jie Tang, Juanzi Li, Hongjun Lu, Bangyong Liang, Xiaotong Huang,
Kehong Wang . 110

A Survey of Schema-Based Matching Approaches
Pavel Shvaiko, Jérôme Euzenat . 146

An Overview and Classification of Adaptive Approaches to
Information Extraction

Christian Siefkes, Peter Siniakov . 172

View Integration and Cooperation in Databases, Data Warehouses and
Web Information Systems

Hui Ma, Klaus-Dieter Schewe, Bernhard Thalheim, Jane Zhao 213

Semantic Integration of Tree-Structured Data Using Dimension Graphs
Theodore Dalamagas, Dimitri Theodoratos, Antonis Koufopoulos,
I-Ting Liu . 250

KDD Support Services Based on Data Semantics
Claudia Diamantini, Domenico Potena, Maurizio Panti 280

Integrating the Two Main Inference Modes of NKRL, Transformations
and Hypotheses

Gian Piero Zarri . 304

Author Index . 341

Generic Relationships in Information Modeling

Mohamed Dahchour1, Alain Pirotte2, and Esteban Zimányi3

1 Institut National des Postes et Télécommunications,
Av. Allal Al Fassi, Rabat, Morocco

dahchour@inpt.ac.ma
2 Université catholique de Louvain, IAG School of Management,

1 Place des Doyens, B-1348 Louvain-la-Neuve, Belgium
pirotte@info.ucl.ac.be

3 Université Libre de Bruxelles, Department of Computer and Network Engineering,
CP 165/15, 50 Av. F. Roosevelt, B-1050 Brussels, Belgium

ezimanyi@ulb.ac.be

Abstract. Generic relationships are abstraction patterns used for struc-
turing information across application domains. They play a central role
in information modeling. However, the state of the art of handling generic
relationships leaves open a number of problems, like differences in the
definition of some generic relationships in various data models and differ-
ences in the importance given to some generic relationships, considered
as first-class constructs in some models and as special cases of other re-
lationships in other models. To address those problems, we define a list
of dimensions to characterize the semantics of generic relationships in
a clear and systematic way. The list aims to offer a uniform and com-
prehensive analysis grid for generic relationships, drawn from a careful
analysis of commonalities and differences among the generic relation-
ships discussed in the literature. The usefulness of those dimensions is
illustrated by reviewing significant generic relationships, namely, mate-
rialization, role, aggregation, grouping, and ownership. Based on those
dimensions, a new metamodel for relationships is proposed.

1 Introduction

Information modeling is the activity of creating abstract representations of some
aspects of physical and social systems and their environment. Information models
are typically built in the early stages of system development, preceding design
and implementation. But information models can also be useful even if no system
is contemplated: they then serve to clarify ideas about structure and functions
in a perception of the world.

Advances in information modeling involve narrowing the gap between con-
cepts in the real world and their representation in information models by iden-
tifying powerful abstractions allowing to better represent application semantics
(see, e.g., [1,29,31,34,38,46]).

Generic relationships are such powerful abstraction mechanisms. They are
high-level templates for relating real-world entities. Well-known generic rela-
tionships include the following.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 1–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M. Dahchour, A. Pirotte, and E. Zimányi

– Classification relates a class with a set of objects sharing the same properties.
An object must be an instance of at least one class. It is also known as is-of.
For example John is an instance of class Person.

– Association represents a structural connection among classes. Associations
can be binary or n-ary (n ≥ 3). An example of a binary association is
teaches(Professor,Course). An example of a ternary association is prescrip-
tion(Doctor,Medicine, Patient).

– Generalization relates superclasses to their specializations called subclasses.
Subclasses inherit all properties (attributes, methods, roles, integrity con-
straints) from their superclasses. Subclasses may define new specific proper-
ties. For example, Vehicle is a generalization of Car.

– Aggregation associates an aggregate (or whole or composite) to its compo-
nents (or parts). It is also known as part-whole or part-of. For example, Car
is an aggregation of Body, Engine, and Wheel.

Generic relationships model patterns abstracting collections of related specific
relationships. Specific relationships are instances of generic relationships in a
particular application. For example, Vehicle�—Car is a specific generalization
with pattern SuperClass�—SubClass (see Figure 1).

ener c
aggregation

BodyCar

 is−of

WholeClass PartClass

Person Sara

Instance

 is−of

generalization

Vehicle

 is−of

SuperClass ClassSubClass

Car

Specific Relationships

classification

Fig. 1. Generic and specific relationships

Research on information modeling has studied other generic relationships like
materialization [9], ownership [48], role [45,10], grouping [33], viewpoint [32],
generation [14], versioning [3,21], realization [25], transition [15], and refine-
ment [41]. These generic relationships naturally model phenomena typical of
complex application domains whose semantics escapes direct representation with
classical generic relationships (i.e., association, generalization, classification, and
aggregation).

Generic relationships play a central role in information modeling. However,
the state of the art of handling them leaves open a number of problems. The
semantics of some generic relationships differs among models. Other generic rela-
tionships have often been badly understood, underestimated, or merely ignored
in some models. In addition, some generic relationships, considered as first-class
constructs in some models, are considered as special cases of other relation-
ships in other models. For instance, in UML [41], the aggregation relationship

 RelationshipsG i

Generic Relationships in Information Modeling 3

is considered a special kind of the ordinary association, whereas in most models
(e.g., [46,36,19,30,23]) aggregation enjoys a status of its own and comes with
more specific features than those defined in UML. Another example concerns
the grouping relationship relating a collection (e.g., TennisClub) and its mem-
bers (e.g., TennisPlayer). Grouping was defined in [33] as an independent generic
relationship with specific characteristics, while it is just considered as a special
case of aggregation, e.g., in [46,19].

Another problem concerns the adequacy of choosing some generic relation-
ships rather than others when modeling an application domain. For example,
it can be argued that the relationship between students and employees on the
one hand and persons on the other hand is more adequately modeled as a role
relationship than as a generalization. Generalization seems more adequate to rep-
resent the relationship between males and females on the one hand and persons
on the other hand. The idea is that the role relationship captures the temporal
and evolutionary aspects of real-world objects (e.g., persons may be students and
later become employees), while the usual generalization relationship deals with
their more static aspects (e.g., most persons are permanently males or females).

Such difficult questions of adequacy or validity of generic relationships for
modeling real-world situations are not directly discussed in this paper, although
they are illustrated through a number of examples. Instead, the paper precisely
characterizes the structural semantics of generic relationships, to help conceptual
database designers precisely evaluate the adequacy of choosing one model rather
than another.

We argue that some problems with generic relationships mainly concern the
absence of formalizable dimensions or criteria along which the relationships can
be characterized in a systematic way. The paper defines such dimensions and
illustrates their effectiveness by reviewing some generic relationships. Imple-
mentation issues are not presented in this paper. They are discussed in detail
in [8].

Notations and Conventions. Table 1 gathers the main notations used in the
paper. We use UML [41] notations to specify classes, instances, generalization,
instantiation, and aggregation. We add notations to represent concepts that have
no equivalent in UML. We prefer to draw associations as boxes with rounded
corners rather than using the UML notation. As in UML, instances of relation-
ships are called links.

The rest of the paper is organized as follows. Section 2 presents a prelimi-
nary classification of generic relationships. Section 3 presents an overview of our
relationship model. Section 4 presents the characteristics of a basic binary rela-
tionship (denoted BBR). Section 5 defines a set of dimensions that characterize
binary generic relationships. Section 6 reviews several generic relationships in
the light of those dimensions. Section 7 gives some guidelines to identify and
define new generic relationships. Section 8 presents a new metamodel for generic
relationships based on their semantics as presented in Sections 4 and 5. Section 9
summarizes and concludes the paper.

4 M. Dahchour, A. Pirotte, and E. Zimányi

Table 1. Notations and their meanings

Notation Meaning

I���C or I ∈ C I is an instance of class C
C1—

�

�

�

�
R —C2 R is a binary association between classes C1 and C2

S—�G S is a subclass of superclass G
W�—P whole class W is composed of part class P
A—∗C abstract class A materializes as concrete class C
R→◦O R is a role class of object class O
O≺· · ·P owner class O owns property class P
M→→S M is a member class of set S
BBR the basic binary relationship

C1
R

——C2 R is a binary relationship between classes C1 and C2

ρC(R) the role played by class C in relationship R

C1(v1, v2)
R

——C2 cardinality of role ρC1(R) is (v1, v2)
πC(R) the set of instances of C participating in R with role ρC(R)
R(C1, C2) R relates C1 and C2

R(c1, c2) there is an instance of R (a link) relating c1 and c2

R1 ⊗ R2 relationships R1 and R2 are exclusive
ρC(R1) ⊗ ρC(R2) roles ρC(R1) and ρC(R2) are exclusive
R1 ⊆ R2 relationship R1 is inclusive in relationship R2

ρC(R1) ⊆ ρC(R2) role ρC(R1) is inclusive in role ρC(R2)

C0
R | d
——{C1, . . . , Cn} partition of R in classes Ci according to discriminator d

2 Classification of Generic Relationships

Generic relationships can be classified along the following three orthogonal di-
mensions, as depicted in Figure 2: (1) degree, (2) structurality and dynamicity,
and (3) dependency on application domains.

Degree. It is the number of participating classes in a relationship. A relationship
of degree two is said to be binary, and one of degree n (n ≥ 3) is n-ary. Examples
of binary generic relationships include:

– classification (of pattern Class���Instance) relates an instance (e.g., Sarah)
to its class (e.g., person);

– generalization (of pattern SuperClass�—SubClass) relates a superclass (e.g.,
persons) to its subclasses (e.g., males and females).

– materialization (of pattern Abstract—∗Concrete) [39,9] relates a class of cat-
egories (e.g., models of cars) with a class of more concrete objects (e.g.,
individual cars);

– ownership (of pattern Property· · ·�Owner) [48] relates an owner class (e.g.,
persons) and a property (e.g., cars) possessed by their objects;

– aggregation (of pattern WholeClass�—PartClass) [30,46] relates composites
(e.g., cars) to their components (e.g., body and engine);

Generic Relationships in Information Modeling 5

structurality/

Relationships
Generic

Dynamic

dynamicityapplication domains
dependency on

dependentGRs
Application−

Application−
independentGRs

degree

Relationships
Binary

GenericRlshps

Structural
GenericRlshps

Relationships
N−ary

Fig. 2. Classification of generic relationships

– role (of pattern ObjectClass◦←RoleClass) [10] relates an object class (e.g.,
persons) and a role class (e.g., employees), describing dynamic states for the
object class;

– grouping (of pattern MemberClass→→SetClass) [33] relates a member class
(e.g., players) and a grouping class (e.g., teams);

– viewpoint (of pattern Class—–	View) [32] represents partial information
about a class viewed from a particular standpoint.

Although most generic relationships are binary, there are situations that
are best modeled with n-ary generic relationships. Examples of n-ary generic
relationships include the following:

– view(Actor,Concept,Facet) [26] relating an actor who sees a concept in a
particular facet. Unlike the viewpoint relationship above which is closer to
the view concept in databases, relationship view was defined in the context
of requirements engineering;

– dependency(Depender,Dependee,Dependum) [49] relating an agent (depender)
depending on the other (dependee) for something (dependum) in order that
the former may attain some goals.

Structural and dynamic generic relationships. Structural generic relationships
are relationships whose semantics can be expressed in terms of static constraints
and rules. They are also referred to as organizational relationships. Examples
of structural generic relationships include the usual classification (where an
instance cannot change its class), generalization, aggregation, materialization,
grouping, and ownership.

By contrast, dynamic relationships involve some dynamic behavior. Examples
include: dynamic classification [11], where an instance can dynamically change
its class, generation [14] where an instance (or a set of instances) of the input
class produces an instance (or a set of instances) of the output class; version-
ing [3], which relates an object class and its time-varying versions, modeling
various states of the object class; realization [25], a variant of classification that
allows an object to add structure to that defined by its class; transition [15],

6 M. Dahchour, A. Pirotte, and E. Zimányi

which keeps track of migrations of instances from source classes to target classes;
refinement [41], which specifies that a class is at a finer degree of abstraction
than another class; and role [45,10], relating an object class with a role class
describing its dynamic states.

Dependency on application domains. Generic relationships can be applica-
tion independent or application specific. Examples of generic relationships with
application-independent semantics include generalization, aggregation, classi-
fication, materialization, grouping, role, versioning, and view. An example of
application-specific generic relationships is BinaryDirectedLink that relates two
nodes (or a node and a link) of an hypermedia graph of a document [44]. An-
other example deals with architectural design [38] where, for example, a re-
lationship hasGeometry relates a symbolic object and a geometric object; ad-
jacentTo relates two objects unrelated by aggregation and whose distance is
less than a specific threshold; connectedTo is similar to adjacentTo, but the
related objects have overlapping volumes. In business and organizational ap-
plications, a network of dependency relationships (e.g., goal dependency, task
dependency, resource dependency, and softgoal dependency) among actors was
proposed in [49]. In the domain of resource management, relationship produc-
tion(Resource,Producer,Consumer) can be defined among resources, their produc-
ers, and their consumers.

This paper focuses on structural generic relationships with application-
independent semantics. The term generic relationships will henceforth denote
those structural generic relationships.

3 Our Relationship Metamodel: Overview

Our relationship metamodel, depicted in a simplified way in Figure 3, encom-
passes three kinds of generic relationships: (i) the basic binary relationship BBR,
(ii) binary generic relationships like generalization, aggregation, materializa-
tion, and association, and (iii) n-ary generic relationships. This section gives
an overview of each of those relationships. Their characteristics are presented in
detail in Sections 4 and 5. A more elaborate version of the metamodel in Figure 3
is given in Section 8.

The basic binary relationship BBR. It is a generic relationship (of pat-
tern MetaClass——MetaClass) between two metaclasses denoted by MetaClass.
MetaClass is the generic metaclass for all application classes. BBR defines
a basic semantics for relationships comprising cardinalities, existence depen-
dency, symmetry, instance transitivity, exclusiveness, inclusion, and attribute
propagation. BBR can be directly instantiated as specific relationships be-
tween application classes, without going through generic relationships like gen-
eralization, aggregation, or materialization. These specific relationships, like
Employee—

�

�

�

�
works —Company, are called associations in UML. We will henceforth

use that terminology for those relationships.

Generic Relationships in Information Modeling 7

AssociationGeneralization Aggregation Materialization ...

GenericRelationships

NaryRelationship

(3,n)

Basic binary relationship (BBR)

Fig. 3. A simplified view of our metamodel for relationships

Binary generic relationships. Generic relationships like generalization, aggre-
gation, and materialization need the basic semantics of BBR in addition to
their specific semantics. It is thus suitable that generic relationships inherit the
semantics of BBR by subclassing. Hence, the role of BBR is twofold: directly
represent associations and factor out the common semantics of all binary generic
relationships.

Generic relationships may refine or redefine the inherited semantics to fit
their specific semantics. For instance, cardinality can be inherited from BBR,
and refined by generalization as follows: SubClass (1,1)—�(0,1) SuperClass. Thus,
in all specific generalizations (e.g., Car—�Vehicle), an instance of the subclass
corresponds to exactly one instance of the superclass and an instance of the
superclass corresponds to at most one instance of the subclass.

N-ary generic relationships. An n-ary relationship relates n classes, for n ≥ 3.
N -ary relationships are more complex than binary ones, they have been much
less studied, and have often been poorly understood in practice. Several data
models (e.g., OML [12], ORM [18]) do not directly support n-ary relationships.
Other models advise against the usage of n-ary relationships, like in the refer-
ence manual of UML 2.0 [41], page 472: “In general it is best to avoid n-ary
associations, because binary associations are simpler to implement and they per-
mit navigation”. It is often argued that n-ary relationships are not frequent in
real-world applications, but this point of view is rather a testimony of the typical
sophistication of the models produced by current practice in conceptual database
design. In practice, n-ary relationships are often represented, and often approx-
imately, by some of their binary projections to be supplemented by consistency
constraints. The only correct general way to do without an n-ary relationship is
to reify it as a new class with n binary relationships to the given n classes. Our
relationship metamodel follows this approach.

We define the semantics of n-ary relationships along a subset of the basic
semantics of BBR (see Section 4). Namely, this semantics includes cardinality,

8 M. Dahchour, A. Pirotte, and E. Zimányi

exclusiveness, inclusion, existence dependency, and attribute propagation. The
semantics of an n-ary relationship can be defined in terms of the n binary relation-
ships representing it coupled with some dependency constraints. In Figure 3, n-
ary relationships are represented by the metatype NaryRelationship that is defined
as an aggregate of three or more binary associations represented by metatype As-
sociation. Details concerning the decomposition of n-ary relationships into binary
equivalent structures can be found in, e.g., [28,43,20].

4 The Basic Binary Relationship

We define the semantics of the basic binary relationship BBR along several di-
mensions, including cardinality, existence dependency, symmetry, instance tran-
sitivity, exclusiveness, inclusion, and attribute propagation mechanisms. These
characteristics are defined in detail in Sections 4.1 to 4.7. They are independent
of one another except for some consistency constraints to be defined for com-
bining exclusiveness and inclusion. The completeness of our set of dimensions,
although intuitively very important, cannot be proved. It can only be addressed
in a pragmatic and empirical manner. The list of characteristics presented in this
paper aims to offer a uniform and comprehensive analysis grid for generic rela-
tionships; it was drawn after carefully analyzing commonalities and differences
among the generic relationships discussed in the literature.

4.1 Cardinality

The cardinality dimension constrains the number of relationship links in which
an object can participate. Let R be a relationship associating classes C1 and C2.
A cardinality (min, max) at the side of C1 means that each instance of C1 must
participate in at least min and at most max links of R at all times. The most
frequent cardinalities are: (0,1) (i.e., at most one), (1,1) (i.e., exactly one), (0,n)
(i.e., any number, the unconstrained case), and (1,n) (i.e., at least one). We find
this traditional definition more intuitive and expressive than that of UML.

4.2 Existence Dependency

Existence dependency characterizes whether or not an object can exist indepen-
dently of related objects. There are two typical cases:

– dependency, meaning that the existence of an object of C1 depends on the
existence of related objects of C2. This is known as mandatory participation
in ER modeling. It is expressed by a minimum cardinality of 1 at the side of
C1;

– independency, meaning that the existence of an object of C1 is independent of
the existence of related objects of C2. This is known as optional participation
in ER modeling. It is expressed by a minimum cardinality of 0 at the side of
C1.

Generic Relationships in Information Modeling 9

Existence dependency also specifies how insertion or deletion of one object
may influence the existence of connected objects. Let o1 and o2 be two objects
related by link r. With respect to the deletion operations, there are three main
options to maintain the existence dependency:

– default deletion: the deletion of an object implies the deletion of all its links
(e.g., the deletion of o1 implies the deletion of r);

– cascade deletion: the deletion of an object implies the deletion of all its links
as well as all other objects involved in those links (e.g., the deletion of o1

implies the deletion of r and o2);
– restrict deletion: the deletion of an object is prohibited if the object is in-

volved in at least one link (e.g., the deletion of o1 is disallowed while link r
exists).

Those deletion options can be associated to each role of a given relationship.
For example, in Figure 4, cascade deletion associated with role employs means
that the deletion of a department implies the deletion of all its employees. The
default deletion associated with role worksOn states that the deletion of an em-
ployee only implies the deletion of its link to the related department.

EmploymentDepartment
(cascade)

Employee
(0,n) (1,1)

employs
(default)
worksOn

Fig. 4. The cascade and default deletion options

Deletion options must be carefully chosen to avoid inconsistencies. For the
example in Figure 4, assume now that the deletion option on role worksOn is
restrict instead of default. When a department is deleted, option cascade on role
employs requires the deletion of all related employees, while option restrict on
role worksOn states that those employees cannot be deleted. Thus a contradiction
arises.

Existence dependency is sometimes referred to as referential integrity. In
object models, this means that for any object o1 containing a reference to an
object o2, the referred object o2 must indeed exist. In systems where referential
integrity is not automatically ensured, the problem of dangling pointers may
arise if a referred object is deleted.

In the relational model, referential integrity is an inclusion constraint between
a set of attributes (called foreign key) of a child relation and the attributes
forming the primary key of a parent relation. For the child relation, this concerns
insert and update operations. Various repair actions can be specified to avoid
violations resulting from deletions and updates in the parent relation:

– cascade: in case of update, the new values in the key are propagated to the
referencing children, whereas in case of deletion the referencing children are
also deleted;

10 M. Dahchour, A. Pirotte, and E. Zimányi

– set null: the foreign key attributes in the referencing tuples of the child
relation are set to null;

– set default: the foreign key attributes in the referencing tuples of the child
relation are set to a given default value;

– no action: referential integrity remains violated and, if no other operation is
executed to correct the mismatch of the corresponding tuples, the complete
transaction is rolled back.

Some relational database systems introduce another referential action called
restrict. Its semantics forbids any change (update or delete) to the primary key
of a parent tuple as long as there are referencing child tuples.

4.3 Symmetry

A binary relationship R associating classes C1 and C2 is symmetric iff ∀c1 ∈
C1 ∀c2 ∈ C2 (R(c1, c2) ⇔ R(c2, c1)). Relationships that are not symmetric are
called asymmetric. Most binary relationships are asymmetric.

The properties of symmetry and asymmetry are particularly relevant for
recursive relationships (i.e., where C1 and C2 are the same class). Exam-
ples of symmetric recursive relationships include siblingOf(Person,Person) and
jointlyTaxedWith(Person,Person). Symmetric recursive relationships are also said
to be reflexive. Examples of asymmetric recursive relationships include super-
vises(Employee,Employee), assembly(Part,Part), and ancestorOf(Person,Person).
Asymmetric recursive relationships are also said to be irreflexive.

4.4 Instance Transitivity

Let R be a binary recursive relationship whose instances relate two instances
of class C. R is instance transitive iff ∀c1, c2, c3 ∈ C (R(c1, c2) ∧ R(c2, c3) ⇒
R(c1, c3)). For instance, relationship ancestorOf(Person,Person) is instance tran-
sitive. Instance transitivity is different from class transitivity, which is presented
in Section 5.3.

4.5 Exclusiveness

The exclusiveness dimension for binary relationships can be defined for both
relationships and roles [18]. As for notation, exclusiveness is represented by a
dashed line labeled with the symbol ⊗.

Relationship exclusiveness. Exclusiveness between two relationships R1 and R2

is defined for relationships relating the same classes C1 and C2. It means that
the set of links of both relationships are disjoint.

For example, Figure 5 shows two exclusive relationships borrows and re-
serves: a student cannot simultaneously borrow and reserve the same book (i.e.,
borrows ∩ reserves = ∅).

Generic Relationships in Information Modeling 11

⊗

borrows

reserves

BookCopyStudent

Fig. 5. Exclusiveness between relationships borrows and reserves

Role exclusiveness. Let R1 and R2 be two relationships sharing the same class
C0 at one end. Let ρC0(Ri) denote the role played by C0 in Ri and πC0(Ri)
denote the set of instances of C0 participating in Ri. Exclusiveness between roles
ρC0(R1) and ρC0(R2) means that πC0(R1) and πC0(R2) are disjoint. Formally,
ρC0(R1)⊗ ρC0(R2) ⇔ πC0(R1) ∩ πC0(R2) = ∅.

⊗
Article

Journal Conference

submittedpublished

Fig. 6. Exclusiveness between roles ρArticle(published) and ρArticle(submitted)

For example, the exclusiveness between roles in Figure 6 means that an ar-
ticle cannot simultaneously be submitted to a conference and be published in a
journal. In this example, the end classes Journal and Conference of relationships
published and submitted, respectively, are distinct. An example of exclusiveness
between roles involved in relationships sharing the same end classes is shown
in Figure 7: the exclusiveness between roles ρApartment(rent) and ρApartment(sell)
means that an apartment cannot simultaneously be rented and sold to clients.

⊗Apartment Client

rent

sell

Fig. 7. Exclusiveness between roles ρApartment(rent) and ρApartment(sell)

12 M. Dahchour, A. Pirotte, and E. Zimányi

4.6 Inclusion

Like exclusiveness, the inclusion dimension for binary relationships can be de-
fined for both relationships and roles. Graphically, inclusion of relationship R1

in R2 is represented by a dashed arrow labeled ⊆ with its origin in R1 and its
destination in R2.

Relationship inclusion. Inclusion of relationship R1 in relationship R2 is defined
for relationships sharing the same classes C1 and C2 at their ends. It means that
the set of links of R1 is a subset of the set of links of R2.

⊆

published

Article

accepted

Journal

Fig. 8. Inclusion of relationship published in relationship accepted

For example, Figure 8 shows inclusion of relationship published in relationship
accepted. This means that an article published in a journal has necessarily been
accepted for publication in that journal (i.e., published ⊆ accepted).

Role inclusion. Inclusion of role ρC0(R1) in role ρC0(R2) is defined for relation-
ships sharing the same class C0 at one end. It means that the set of instances of
C0 participating in role R1 is a subset of the set of instances of C0 participating
in role R2. Formally, ρC0(R1) ⊆ ρC0(R2) ⇒ πC0(R1) ⊆ πC0(R2).

⊆

titular

Person

Course

dean

Faculty

Fig. 9. Inclusion of role ρPerson(dean) in role ρPerson(titular)

For example, Figure 9 shows inclusion of role ρPerson(dean) in role
ρPerson(titular). This means that a faculty dean must be titular of a course.
In this example, the end classes Faculty and Course of relationships dean and
titular, respectively, are distinct. An example of inclusion between roles par-
ticipating in relationships sharing the same end classes is shown in Figure 10.

Generic Relationships in Information Modeling 13

Role ρStudent(practices) is included in role ρStudent(registers), meaning that a per-
son practicing a sport has necessarily registered in a sport. That allows John
to practice Tennis while being registered in Football. If it is required that each
person who practices a sport should necessarily register for that sport, then the
constraint should be an inclusion of relationship practices in relationship registers.

⊆ SportStudent

practices

registers

Fig. 10. Inclusion of role ρStudent(practices) in role ρStudent(registers)

Consistency rules. The following additional rules hold for exclusiveness and
inclusion constraints on relationships R1 and R2:

– relationship inclusion and relationship exclusiveness cannot coexist, because
R1 ⊆ R2 ⇒ R1 ∩R2 �= ∅ and conversely R1 ∩R2 = ∅ ⇒ (R1 �⊆ R2) ∧ (R2 �⊆
R1);

– relationship inclusion and role exclusiveness cannot coexist, because R1 ⊆
R2 ⇒ πC0(R1) ∩ πC0(R2) �= ∅ and conversely πC0(R1) ∩ πC0(R2) = ∅ ⇒
(R1 �⊆ R2) ∧ (R2 �⊆ R1);

– role inclusion and role exclusiveness cannot coexist, because πC0(R1) ⊆
πC0(R2) ⇒ πC0(R1) ∩ πC0(R2) �= ∅ and conversely πC0(R1) ∩ πC0(R2) =
∅ ⇒ (πC0(R1) �⊆ πC0(R2)) ∧ (πC0(R2) �⊆ πC0(R1)).

– however, role inclusion and relationship exclusiveness may coexist, because
πC0(R1) ⊆ πC0(R2) �⇒ R1∩R2 �= ∅ and conversely R1∩R2 = ∅ �⇒ πC0(R1) �⊆
πC0(R2).

⊆ ⊗

reviewed

submitted

PersonArticle

Fig. 11. Coexistence between role inclusion and relationship exclusiveness

For example, in Figure 11 role ρArticle(submitted) is included in role
ρArticle(reviewed) (a reviewed paper has necessarily been submitted), while re-
lationships submitted and reviewed are mutually exclusive (an article cannot be
submitted and reviewed by the same person).

14 M. Dahchour, A. Pirotte, and E. Zimányi

4.7 Propagation Mechanisms

Given a binary relationship R associating classes C1 and C2, attributes can
propagate from C1 to C2 and vice versa. We define two kinds of propagated
attributes: derived attributes and computed attributes.

An attribute of class C1 is said to be derived from C2 through R if it is
inherited as is from C2 to C1. An attribute a1 of class C1 is said to be computed
from attributes a21 , . . . , a2p (p ≥ 1) of C2 through R if the value of a1 for
a given object c1 of C1 is computed from values of attributes a21 , . . . , a2p of
objects belonging to C2 that are related to c1 via R. This means that value(a1)=
f(value(a21), . . . , value(a2p)). Function f is an aggregate operator such as +, -,
*, min, max, avg.

For example, attribute publicationDate of class Article can be derived from
attribute issueDate of class Journal via relationship published, since its value for
each article is the same as its value for the issue of the journal in which the
article is published. Similarly, the number of pages of a journal can be computed
as the sum of the number of pages of its articles. Also, the average grade of a
class can be computed as the average of individual grades of all students of that
class.

Propagation mechanisms are expressed in ODMG [5] by means of path ex-
pressions. For example, the publication date of an article a1 can be expressed
by the path expression a1.j1.issueDate that returns the publication date of jour-
nal j1 where a1 appeared. Such propagations are not specific to relationships.
Derived and computed attributes can also be defined within a single class. An
usual example is attribute age of class Person that can be derived from attribute
birthDate of the same class.

5 Binary Generic Relationships

This section describes the characteristics of binary generic relationships in a
systematic way. Part of these characteristics are inherited from the basic rela-
tionship BBR by subclassing. As mentioned earlier, some of these properties, like
cardinality, can be redefined by some generic relationships to conform with their
particular semantics. Another part of the characteristics of generic relationships
is described along several dimensions like class- and instance-level semantics,
composition, class transitivity, class nonrecursivity, multiplicity, and partition-
ing. These dimensions are described in detail in Sections 5.1 to 5.9.

Although these dimensions have been identified by carefully studying a sub-
stantial collection of generic relationships, we cannot claim that they are ex-
haustive. The list remains open to other dimensions that could be identified by
exploring other generic relationships.

The following notations and assumptions are needed to formally define some
dimensions below:

– Let R(MC1, MC2) be a predicate stating that R is a binary generic relation-
ship between two metaclasses MC1 and MC2. Specific relationships, which

Generic Relationships in Information Modeling 15

are instances of R, have the same name and are defined between classes
denoted by C1 and C2. Thus, R(C1, C2) means that there is a specific rela-
tionship R between classes C1 and C2 where C1 is an instance of MC1 and
C2 is an instance of MC2.

– The role played by MC1 in R, noted ρMC1(R), is the same as the role played
by C1 in R, noted ρC1(R). For example, the whole role played by WholeClass
in WholeClass�—PartClass is the same as the role played by Car in the specific
aggregation Car�—Body.

– C ∈ MC means that class C is an instance of metaclass MC.

5.1 Class- and Instance-Level Semantics

The semantics of generic relationships concerns both classes and instances of
these classes. Consequently, comprehensive semantics must deal with both the
class level and the instance level in a coordinated manner.

For example, the class-level semantics of generalization states that:

– a class can have several superclasses and several subclasses;
– each class inherits all properties from its superclasses;
– conflicts induced by multiple inheritance are avoided with a specified strat-

egy;
– each class has a (1,1) cardinality regarding each of its superclasses and a

(0,1) cardinality regarding each of its subclasses.

At the instance level, the generalization relationship expresses the following
semantics:

– an instance of a class C cannot be an instance of another class that is not
direct or indirect superclass of C1;

– an instance cannot have additional properties than those of its class2.

5.2 Composition

Generic relationships can be involved in compositions, where a class plays several
roles of the same generic relationship R in several specific relationships based
on R, as schematized in Figure 12(a). Formally, a generic relationship R can be
composed iff ∃C1, C2, C3 such that R(C1, C2)∧R(C2, C3) where C1 ∈ MC1, C2 ∈
MC2, C2 ∈ MC1, and C3 ∈ MC2. C2 plays at the same time role ρMC1(R) and
role ρMC2(R).

An example of composition of generalizations is Person�—Student�—Grad-
uateStudent, where Student is at the same time a superclass of GraduateStudent
and a subclass of Person (see Figure 12(b)). Similarly, in the composition of
aggregations Car�—Body�—Door, Body is at the same time a composite of Door
and a component of Car.
1 This is possible in models allowing multiple classification, like Telos [35] or

MADS [37], where an object can be an instance of several classes not related, directly
or indirectly, by the generalization link.

2 This restriction is overcome with the realization relationship [25].

16 M. Dahchour, A. Pirotte, and E. Zimányi

C3C2C1

MC2MC1 SuperClass

StudentPerson

SubClass

(a) (b)

RR

R

GraduateStudent

Fig. 12. Composition of relationships

5.3 Class Transitivity

Some generic relationships that can be composed may be class transitive. A
generic relationship R is class transitive iff ∀C1, C2, C3 R(C1, C2)∧R(C2, C3) ⇒
R(C1, C3). For example, generalization is class transitive: the generalizations
Person�—Student�—GraduateStudent imply Person�— GraduateStudent. By con-
trast, aggregation is not class transitive in general.

5.4 Class Nonrecursivity

A generic relationship R is said to be class nonrecursive if R does not hold at the
class level between two occurrences of the same class. For example, generalization
is class nonrecursive, since a class cannot be a subclass of itself, while aggregation
may be class recursive (e.g., Program�—Program).

5.5 Multiplicity

A role in a generic relationship is said to be multiple3 if the same class can
participate with that role in several instances of the generic relationship (see
Figure 13(a)). Formally, role ρMC1(R) is multiple iff ∃C1, C2, C3 such that
R(C1, C2) ∧ R(C1, C3) where C1 ∈ MC1, C2 ∈ MC2, and C3 ∈ MC2. Multi-
plicity of role ρMC2(R) can be defined in a similar way. Figure 13(a) shows an
example of multiplicity for role ρMC1(R).

Most generic relationships allow multiplicity in each role. For example, with
generalization, a class can have several superclasses and several subclasses as
shown in Figure 13(b). Also, with aggregation, a composite can have several
components and a component can be part of several composites.

5.6 Partitioning

Generalization and aggregation were defined so far as binary relationships. How-
ever, it is often natural to group several binary relationships that involve the
same superclass for generalizations, or the same component or the same com-
posite for aggregations. Such groupings add semantics to the semantics of the
3 This definition of multiplicity should not be confused with its use, e.g., in UML, as

a synonym of cardinality.

Generic Relationships in Information Modeling 17

SubClass

CountryStudent

ForeignPeople

SuperClass

Student

ForeignStudentC3
R

R

C1 C2
R

MC1 MC2

(a) (b)

Fig. 13. Multiplicity of relationships

participating binary relationships. As in UML, such groupings are referred to as
partitions4. Each partition, together with the binary generalizations and aggre-
gations taking part in it, carry a unique discriminator (or label). A partition for

a generic relationship R is noted C0
R | d
——{C1, . . . , Cn} where the C0

R
——Ci are

specific binary relationships that are instances of R, and d is the discriminator
of the partition.

African Male Female European

Person

(a)

Person

Male Female

EuropeanAfrican

(b)

 continent
 sex

 continent
 sex

 continent

 sex

Fig. 14. Partitions for generalizations

Figure 14(b) shows two partitions for generalizations, Person
sex
�—{Male, Fe-

male} and Person
continent
�—— {African, European}, obtained by grouping binary gen-

eralizations in Figure 14(a), with discriminators sex and continent, respectively.
Similarly, Figure 15(b) shows two partitions obtained by grouping binary aggre-
gations with discriminators space and time.

Partitions of generalizations can be characterized along the usual dimensions
of totality and exclusiveness, resulting in four combinations: (total, exclusive),
4 The term partition has a specific meaning in set theory. In our context, the term

grouping could be more appropriate, but we avoid it because it denotes another
generic relationship.

18 M. Dahchour, A. Pirotte, and E. Zimányi

space

School

Building Sport Schoolyard Course

(a)

space

time

time

(b)

Building Schoolyard

School

time

space

Sport Course

Fig. 15. Partitions for aggregations

(partial, exclusive), (total, overlapping), and (partial, overlapping). More for-

mally, let P = C0
d

�— {C1, . . . , Cn} be a partition of a superclass C0 into a set
of subclasses C1, . . . , Cn according to discriminator d. The dimensions above are
defined as follows.

– Total: every instance of the superclass is an instance of at least one subclass
in P . Formally, P is total iff ∀c ∈ C0 ∃i ∈ [1, n] (c ∈ Ci).

– Partial: an instance of the superclass needs not be an instance of a subclass
within P . Formally, P is partial if it may be the case that ∃c ∈ C0 ∀i ∈
[1, n] (c �∈ Ci).

– Exclusive: an instance of the superclass may be an instance of no more than
one subclass within P . Formally, P is exclusive iff ∀i ∈ [1, n] ∀c ∈ Ci � ∃j ∈
[1, n] (i �= j ∧ c ∈ Cj).

– Overlapping: an instance of one subclass may simultaneously be an instance
of another subclass in P . Formally, P is overlapping if it may be the case
that ∃c ∈ C0 ∃i, j ∈ [1, n] (i �= j ∧ c ∈ Ci ∧ c ∈ Cj).

Some authors (e.g., [45]) distinguish static from dynamic partitions. Roughly,
static partitions correspond to total and exclusive partitions, and dynamic par-
titions correspond to total and overlapping partitions.

5.7 Exclusiveness

This characteristic is inherited from relationship BBR which defines two cate-
gories of exclusiveness: relationship exclusiveness and role exclusiveness. How-
ever, generic relationships with the multiplicity property for a role may only
involve exclusiveness between roles.

For example, in the aggregations Proceedings�—Article—�Journal,
Proceedings�—Article and Journal�—Article can be exclusive, with the meaning
that the same article cannot appear both in conference proceedings and in a
journal. Similarly, in the materializations Video∗—Movie—∗ DVD, Movie—∗DVD

Generic Relationships in Information Modeling 19

and Movie—∗Video can be considered as exclusive if a movie can materialize
either in a DVD or in a Video but not in both at the same time.

5.8 Inclusion

Like exclusiveness, this characteristic is inherited from relationship BBR.
Generic relationships with the multiplicity property for a role may only involve
inclusion between roles.

For example, in the generalizations PhDStudent—�Person�—Teaching-
Assistant, generalization Person�—TeachingAssistant is inclusive in Person
�—PhDStudent if a teaching assistant is necessarily a PhD student. Sim-
ilarly, in the materializations Video∗—Movie—∗DVD, materialization Movie
—∗DVD is inclusive in Movie—∗Video if a movie can materialize as a
DVD only if it is already materialized as a Video. In the group-
ings PoliticalParty←←Deputy→→Parliament, Deputy→→Parliament is inclusive in
Deputy→→PoliticalParty if a deputy in a parliament necessarily belongs to a po-
litical party.

5.9 Propagation

Most generic relationships allow propagating structure and behavior from one
participant to another. This is carried out by inheritance or by delegation. In
some cases, propagation is unidirectional. For example, in generalization, sub-
classes (totally or partially) inherit attributes and methods from superclasses.
In aggregation, composites can access some properties of their parts (and vice
versa) by delegation. For example, Car inherits the color attribute of its compo-
nent Body.

Inheritance by delegation [27] can be characterized as follows. Assume a
message m(arguments) is sent to an object o1 and method m is not defined in o1’s
class. According to the usual message-passing semantics, the message handler
would signal an error. But, if the object o1 was related to an object o2 with
respect to some semantic relationship, it could make sense to find out whether o2

would be able to return a semantically meaningful response by executing method
m. Thus, the object o1 can be seen as delegating the execution of method m to
its related object o2.

6 A Review of Some Generic Relationships

This section reviews some generic relationships and defines their semantics in
the light of the dimensions defined in Section 5. Of course, the goal here is not
to describe in detail that semantics, but rather to illustrate the effectiveness of
our dimensions.

20 M. Dahchour, A. Pirotte, and E. Zimányi

6.1 Materialization

Materialization [9] is a binary relationship with pattern Abstract—∗
Concrete relating a class of abstract objects and a class of more concrete ob-
jects, where each abstract object can be viewed as a category characterizing a
subset of the concrete objects.

In the example of Figure 16, CarModel is the abstract class of materialization
CarModel—∗Car and Car is its concrete class. CarModel represents information
typically displayed in the catalog of car dealers, while class Car represents infor-
mation about individual cars. Figure 17 shows an instance FiatRetro of CarModel
and an instance Nico’s Fiat of Car, of model FiatRetro.

name: string
stickerPrice: integer
#doors: {integer}
engineSize: {integer}
autoSound: {string}
specialEquip: {string}

CarModel

*
 owner: string

 manufDate: date
 serial#: integer

Car

(0,n) (1,1)

Fig. 16. An example of materialization

alarm=Burglar_King

 stickerPrice= 10.000
 name = FiatRetro

 #doors= 3
 engineSize= 1200

airbag=Acme
 autoSound= {tape, radio}

 manufDate= 1/1/95
 serial#= 123
 owner= Nico

cruiseCtrl= Fiat

 #doors={3,5}

 name= FiatRetro

 stickerPrice=10.000

 autoSound={tape, radio}
 engineSize={1200,1300}

 specialEquip= {airbag, alarm, cruiseCtrl}

Nico’s Fiat : Car

FiatRetro : Model

Fig. 17. Instances of CarModel and Car classes from Figure 16

Cardinality. Intuitively, the materialization CarModel—∗Car means that every
concrete car (e.g., Nico’s Fiat) has exactly one model (e.g., Fiat-Retro), while
there can be any number of cars of a given model. Most real-world examples
of materialization have cardinality (1,1) at the side of the concrete class and
cardinality (0,n) at the side of the abstract class, although the latter cardinality
can be further constrained.

Dependency. In a materialization, the deletion of an abstract instance induces
the deletion of its associated concrete instances. In the materialization of Fig-
ure 16, when model FiatRetro is deleted, all instances of Car associated to that

Generic Relationships in Information Modeling 21

model, e.g., Nico’s Fiat, are also deleted. On the other hand, the deletion of a
concrete instance induces the deletion of its associated abstract instance only
if the minimal cardinality at the abstract side of the materialization is 1. For
example, if in CarModel—∗Car the minimal cardinality of CarModel is 1, meaning
that a car model has associated at least one car, then the deletion of the last car
of a model implies the deletion of that car model.

Attribute propagation. Some information in a concrete instance is naturally
viewed as obtained from its associated abstract instance. For example, in Figure
17, Nico’s Fiat directly inherits the name and stickerPrice of its model FiatRetro.
Further, Nico’s Fiat has attributes #doors, engineSize, and autoSound whose val-
ues are selections among the options offered by multivalued attributes with the
same name in FiatRetro. For example, the value of engineSize for Nico’s Fiat is
taken from the possible values of the engineSize in FiatRetro. Finally, the value
{airbag, alarm, cruiseCtrl} of attribute specialEquip for FiatRetro means that each
car of model FiatRetro comes with three pieces of special equipment: an air bag,
an alarm system, and a cruise-control system. Thus, Nico’s Fiat has three new
attributes named airbag, alarm, and cruiseCtrl, whose suppliers are, respectively,
Acme, Burglar King, and Fiat. Other FiatRetro cars may have different suppliers
for their special equipment and cars of models other than FiatRetro may have a
different set of pieces of special equipment.

These different kinds of attribute propagation from an abstract class to its
concrete class are discussed in detail in [9].

Composition. Materializations can be composed in hierarchies, where the
concrete class of one materialization is also the abstract class of an-
other materialization. For example, the materializations Play—∗Setting—∗
Performance models that theater Plays materialize as Settings that embody the
production decisions for a theatrical season. Settings in turn materialize as Per-
formances, at a particular date, with each role of Play assigned to a specific actor
for each Performance.

Class transitivity. Materialization is class transitive: for classes A, C, and D,
materializations A—∗C—∗D imply A—∗D.

Class nonrecursivity. Materialization is class nonrecursive, in that a class cannot
materialize in itself.

Materialization semantics. The semantics of materialization is defined as a com-
bination of generalization, classification, and of a class/metaclass correspon-
dence. This is expressed as a collection of two-faceted constructs, each one being
a composite structure comprising an object, called the object facet , and an asso-
ciated class, called the class facet . The object facet is an instance of the abstract
class and the class facet is a subclass of the concrete class. Details about this
semantics are given in [9].

22 M. Dahchour, A. Pirotte, and E. Zimányi

6.2 Aggregation

Aggregation (e.g., [16,22,24,30,46]) is a binary relationship with pattern
WholeClass�—PartClass by which a set of (component) objects is considered a
higher-level (aggregate) object. For example, Figure 18 shows two aggregations
between composite Newspaper and components Editorial and Article.

Editorial

nb_of_words
date

Newspaper

title
publisher

nb_of_words
 date nb_of_words

Article(0,1) (1,n)

Fig. 18. Examples of aggregation

Cardinality. For the composite role, cardinality determines how many compo-
nents can be grouped together to form a composite. For example, in Figure 18,
a newspaper is composed of (1,n) articles. For the component role it specifies
the number of composites that a component can be part of.

The lifetime of parts sometimes depends on that of their wholes and con-
versely. The part-to-whole dependency means that the existence of a part de-
pends on the existence of the corresponding whole, i.e., that the deletion of the
whole implies the deletion of the part. As an example, Journal�—Article is part-
to-whole dependent if the deletion of a journal implies the deletion of its articles.
The whole-to-part dependency means that the existence of a whole depends on
the existence of the corresponding part, i.e., the deletion of the part implies the
deletion of the whole.

Attribute propagation. Some features of a whole are viewed as features of its
parts and vice versa. Thus, there are two kinds of attribute propagation: upward
propagation from the part class to the whole class and downward propagation
from the whole class to the part class. For example, in Car�—Body, the color
of a car can be propagated upwards from its corresponding body. Similarly, in
Newspaper�—Article, the date of articles is propagated downwards from their
corresponding newspaper. Furthermore, the value of a propagated attribute can
be obtained as a combination of values from several source objects. For instance,
the color of a car’s body can be defined as some combination of the colors of its
panels.

Composition. Aggregations can be composed in hierarchies, where the compo-
nent class of one aggregation is also the composite class of another aggregation
as in Building�—Room�—Wall.

Aggregation allows multiplicity for both the composite and the compo-
nent roles. Figure 18 shows an example of multiplicity for the composite
role. An example of multiplicity for the component role is Journal�—Article
—�Compilation where an article can be included in a journal or in a compilation.

Generic Relationships in Information Modeling 23

Class transitivity. Aggregation is not class transitive in general. For
example, the aggregations Hand—�Musician—�Orchestra does not imply
Hand—�Orchestra. However, there are some categories of aggregations that
are class transitive when taken in combination. For example, the tax-
onomy proposed in [46] includes seven subcategories of aggregation: (1)
component—�object (Engine—�Car); (2) feature—�event (Panel—�Confe-rence);
(3) member—�collection (Advisor—�ThesisCommittee); (4) portion —�mass
(Section—�Chapter); (5) phase—�activity (Analysis—�SystemDevelopment); (6)
place—�area (City—�Country); (7) stuff—�object (Metal —�Vehicle). While
in [46] only aggregations belonging to the same subcategory are class transitive,
class-transitive combinations of aggregations can be defined among categories
(1), (4), (5), and (6) [30].

Class nonrecursivity. Aggregations can be recursive: a typical example is that
of part-subpart in assemblies, where parts are composed of other parts.

Exclusiveness. Aggregations can be exclusive and shared. A shared aggrega-
tion puts no restrictions on the number of composites that a given compo-
nent can be part of, allowing the component to be shared. An example is
Compilation�—Article if the same article can be included in any number of com-
pilations.

An exclusive aggregation enforces the restriction that a given component can
be part of only a single composite. Exclusiveness is natural in physical assem-
blies. Thus, in Car�—Engine, two cars cannot share the same engine. This kind
of exclusiveness is called class exclusiveness as it enforces the exclusive reference
constraint within a single class. It is also the case that a car and, say, an air-
plane cannot share the same engine. This type of exclusiveness is called global
exclusiveness since it bears on the entire database.

Partitioning. An aggregate class may have several partitions of component
classes, each corresponding to a specific discriminator. For example School can
be decomposed in two partitions: School

space�—{Building,Schoolyard} and School
time�—

{Course, Sport}.

6.3 Role

Role [2,40,45,13,6,47,10] is a binary relationship with pattern Object-
Class◦←RoleClass relating an object class and a role class describing dynamic
states for the object class. This definition of role should not be confused with
the concept of roles in the entity-relationship model. Differences between those
concepts are discussed in [6].

Figure 19 shows two role relationships relating an object class Person, and
role classes Student and Employee. In a role relationship, the object class defines
permanent properties of objects while each role class defines a set of properties
characterizing a particular aspect in which those objects can be viewed during
their lifetime. The idea is that the role relationship captures the temporal and

24 M. Dahchour, A. Pirotte, and E. Zimányi

name: String
address: String

Person

phone: Integer

Student Employee

univ: String depart: String

courses: {String}

stud#: Integer
major: String

emp#: String
function: String
salary: Integer

Fig. 19. Examples of roles

evolutionary aspects of real-world objects, while the usual generalization rela-
tionship deals with their static aspects. Thus, while classes Male and Female
may be linked to Person via generalization links, Student and Employee would
rather be linked to Person via role links. Intuitively, the role relationship offers
modeling capabilities similar to generalization valid for a limited time.

Cardinality. Each instance of a role class (e.g., Student) is related to exactly
one instance of its object class (e.g., Person) but, unlike generalization, each
instance of the object class can be related to any number of instances of the role
class, depending on the maximal cardinality at the side of the object class. For
example, John can be at the same time a student in more than one university
and an employee in more than one department.

Dependency. The lifetime of roles depends on that of objects playing those
roles. Thus, the deletion of an object induces the deletion of its associated
roles. Also, the deletion of a role may induce the deletion of its associated
object if the minimal cardinality of the object class is 1. For example, if
Person(1,n)◦←(1,1)Employee, meaning that a person plays at least once the em-
ployee role, then the deletion of the last employee role implies the deletion of
that person.

Attribute propagation. Role classes are not introduced for sharing information.
This should rather be the responsibility of generalization. If Student is viewed
as a subclass of Person, it inherits all properties from Person. Viewed as a role
class of Person, Student does not inherit properties of Person. Instead, instances
of role classes access properties of their corresponding objects by delegation.

Composition. Role relationships can be composed in hierarchies, where the role
class of one role is also the object class of another role. For example, class Person
may have role class Employee, and the latter may have two role classes Professor
and UnitHead.

Role allows multiplicity for both the object and the role classes. Figure 19
shows an example of multiplicity for the object class. An example of multiplic-

Generic Relationships in Information Modeling 25

ity for the role class is Student◦←Councilor→◦Faculty where both students and
faculties can play the role of councilors in the university council.

Class transitivity. Role is class transitive: for role classes R1, R2, and object
class O, R1→◦R2→◦O implies R1→◦O.

Class nonrecursivity. Role is class nonrecursive: for each class C we cannot have
C◦←C.

Partitioning. An object class may have several partitions of role classes. For
example, in an age perspective, a person may play the role of teenager or an
adult, whereas, in an employment perspective, a person may play the role of
an employee or an unemployed. Therefore, there are two partitions: Person

age◦←
{Teenager, Adult} and Person

employment◦←—— {Employee, Unemployed}.

6.4 Grouping

Grouping [4,33] is a binary relationship with pattern MemberClass→→ SetClass
by which a collection of set members is considered as a higher-level set object.
Figure 20 shows an example of grouping between the member class TennisPlayer
and the set class TennisClub.

The set class in a grouping has at least one set-determining attribute and,
optionally, a number of set-describing attributes and/or constraints. The set-
determining attribute is the attribute whose value is the set of members. In
Figure 20, the grouping class TennisClub defines three set-determining attributes
grouped under the category 〈〈members〉〉. A set-describing attribute is an at-
tribute whose value is derived from attributes of the set of members. In Fig-
ure 20, under the category 〈〈attributes〉〉 there are two ordinary attributes name
and fee and one set-describing attribute avgAgeOfMembers holding the average
age of the club members.

The most important difference between the concepts of grouping and set is
that a grouping is concerned with properties and constraints of the grouping
viewed as a whole in addition to set membership. Thus, whereas two sets are
equal if and only if they have the same members, this is not necessarily so for
groupings. Two groupings having the same members, for example, two specific

Tennis Player

SSN : Integer
name : String

birthDate : Date
league−level : Integer

president : TennisPlayer
instructor : TennisPlayer

Tennis Club

name : String
fee : Integer

clients : {TennisPlayer}

<<members>>

<<attributes>>

avgAgeOfMembers : Integer

Fig. 20. An example of grouping

26 M. Dahchour, A. Pirotte, and E. Zimányi

clubs, may differ in their internal identifiers or in the values of some property
associated with the grouping, such as the minimum age required to be a member
of the club.

Cardinality. In general, the grouping relationship constrains a set class to
have at least one member whereas the participation of a member in the
grouping may be optional or mandatory. For example, the cardinalities in
Person(0,1)→→(1,n)PoliticalParty mean that every person may be a member of
at most one political party and that every political party has at least one
member.

Dependency. In general, the lifetime of members does not depend on that of
their groupings and conversely. However, a dependency may be implied by the
cardinality constraints. For example, in Employee(1,1)→→(1,20)De-partment, due
to the cardinality (1,1), the deletion of a department implies the deletion of its
employees.

Attribute propagation. Grouping can be seen as a kind of aggregation. Hence,
both upwards and downwards propagation are possible, although this is not
clearly stated in [4] or [33].

Composition. Grouping can be composed in hierarchies, where the member
class of one grouping is also the set class of another grouping. An example is
TennisPlayer→→TennisClub→→TennisFederation.

Grouping allows multiplicity for both the member and the set
classes. Examples are, respectively, TennisClub←←Employee→→TradeUnion and
Person→→Sponsors←←Organization.

Class transitivity. Grouping is normally not class transitive. For example,
Book→→Library →→LibraryNetwork does not imply Book→→LibraryNetwork.

Class nonrecursivity. Grouping is class nonrecursive: a class cannot be member
of itself.

Exclusiveness. In the grouping relationship, members can be exclusive or shared.
A shared member puts no restrictions on the number of groupings that a given
element can be member of, allowing the member to be shared. For example
TennisClub←←TennisPlayer is shared if the same player can be a member in any
number of clubs.

Member covering. This specifies whether or not all instances of the member class
are necessarily related to an instance of the grouping class.

Partial covering means that there is at least one member that does not be-
long to any grouping. For example, in Employee→→TennisClub, not all employ-
ees must be members of the tennis club. Complete covering means that the
grouping provides a complete covering of the member class. For example, in
TennisPlayer→→TennisClub the grouping class TennisClub covers all instances of
the member class TennisPlayer.

Generic Relationships in Information Modeling 27

6.5 Ownership

Ownership [48,17] is a binary relationship with pattern Property· · ·�
Owner relating an owner and a property that is possessed. For example, in Figure
21 Person is the owner class and BankAccount is the property class.

Intuitively, ownership means that the owner of a property has certain rights
on the property. Various shades of ownership express the intuitive semantics
of the relationship. Thus, the owner can be a person or a legal entity (e.g.,
a corporation or an organization). Property ownership can be temporary or
permanent. A property can be real (e.g., a piece of land), intellectual (e.g., an
idea, a creative work, a patent), or personal encompassing everything that is not
a real or an intellectual property.

Cardinality. In general, ownership constrains a property to have at least one
owner whereas an owner may have 0 or several properties. In the example of
Figure 21, a person can have (0,n) bank accounts and a bank account can have
(1,n) owners.

number
type

balance
 creditLimit

BankAccount

firstName
lastName

netBalance
 address

 Person

Fig. 21. An example of ownership

Dependency. The deletion of a property can cause deletion of the owner. For
example, suppose that an insurance company distinguishes people who own cars
from people who do not. This can be modeled by a class Person with a subclass
CarOwner and an ownership CarOwner≺· · ·Car. In this case, the car owner is
dependent on the car, i.e., if a car owner only owns one car and this car is
deleted, then the car owner should be deleted from class CarOwner (but not
from class Person).

An example of dependency of the property on the owner is an ownership
Employee≺· · ·Car with an additional constraint stating that, when employees
stop working for the company, the information about their cars is no longer
needed.

Attribute propagation. Some features of a property are naturally viewed as fea-
tures of its owner or vice versa. For example, the address of persons may be
modeled as the address of their house rather than as an attribute of persons.
Likewise, the name on a passport can be modeled as the name of the passport
owner. In the former case, the value of address is propagated upwards from the
property to the owner. In the latter case, the value of name is propagated down-
wards from the owner to the property. Furthermore, the value of the propagated

28 M. Dahchour, A. Pirotte, and E. Zimányi

attribute can be obtained as a combination of values from several objects linked
through ownership. For example, in Figure 21, attribute netBalance of a person
is computed as the sum of the balance of the person’s bank accounts.

Composition. Ownership can be composed where the property of an own-
ership is also the owner of another ownership, as in Corporation≺· · ·Division
≺· · ·Factory.

Ownership allows multiplicity for both the property and the owner
roles. Thus, owner classes can own several properties as in Vehicle· · ·�Per-
son≺· · ·House. Also, a property can be owned by several owners as in
Person≺· · ·Stock· · ·�Company.

Class transitivity. Ownership is generally not class transitive. A counterexample
is that Person≺· · ·Cat≺· · ·Claw does not imply Person≺· · ·Claw.

Class nonrecursivity. Ownership can be recursive: for example, a company can
own other companies.

Exclusiveness. Ownership can be exclusive or joint, i.e., a property may be owned
by one owner or shared by several owners. Person≺· · ·Retirement-Portfolio is an
example of exclusive ownership.

There are two types of joint ownerships. Free joint ownership states no ex-
plicit partition of the rights of the joint owners in the property. For example,
a joint bank account is freely shared by a couple. In percentage joint owner-
ship, each owner takes a percentage of the ownership, e.g., when husband and
wife each owns 50% of their house. An equal joint is when all owners have the
same percentage. As noted in [17], percentage joint is unique to ownership, while
exclusiveness also concerns other generic relationships.

Partitioning. In the ownership relationship, the owner may own several cate-
gories of properties each according to a given perspective. For example, consider
the owner class Person. Viewed as a biological being, a person owns a brain and a
heart. Viewed as a psychological being, a person possesses a certain responsibility

and a personality. We have therefore two partitions: Person
biology
≺· · · {Brain, Heart}

and Person
psychology
≺· · · · · · {Responsibility, Personality}.

7 New Generic Relationships

This section gives some guidelines to identify and define new generic relation-
ships.

Information modeling focuses on capturing and representing certain aspects
of the real world relevant to the functions of an information system. The central
constructs in the building process of information models are entities (or types,
classes) representing important things of the application domain, and relation-
ships among those things.

Generic Relationships in Information Modeling 29

When building an information model, it is relatively easy to identify adequate
entities to capture real-world objects: they directly correspond to the important
concepts naturally manipulated by stakeholders in the application domain. The
research reviewed in this paper advocates the use of a rich repertoire of generic
relationships for modeling relationships between entities. Thus, for the infor-
mation modeler, the choice of appropriate relationships to associate objects is
comparatively more difficult.

Various choices of relationships correspond to sometimes subtle differences
in the shades of real-world semantics captured in an information model. For
example, the relationship between books and their book copies is better modeled
as a materialization than as an association.

In practice, when deciding on which relationship to use for modeling a re-
lationship, the modeler has to choose between: (1) a usual association (like in
Employee—

�

�

�

�
works —Employer), (2) a specific relationship derived from a generic

relationship within the repertoire of available generic relationships (such as the
relationship Employee→◦Person derived from RoleClass→◦ObjectClass), and (3)
a specific relationship derived from a new generic relationship identified in the
application domain.

New relationships can be identified when the same pattern is repeatedly en-
countered and it does not fit well the available generic relationships, but the
decision to define a new generic relationship should be made with care. For
example, some candidate generic relationships can be best described as subcat-
egories of already identified relationships (like the subcategories of aggregation
discussed in, e.g., [24,42,46]).

When a new generic relationship has been tentatively identified, it must be
well defined (i.e., it must be intuitively well understood), it should correspond
to a significant number of specific instances validated in application domains, its
semantics should be formalized, and it should be associated with an appropriate
graphical notation.

The intuitive semantics of a generic relationship is a broad intent about
the duties of the relationship in application domains, in the style of the short
descriptions of Section 2. The formal semantics fits in two categories: the first one
positions the relationship along the various characteristics reviewed in Section 5
while the second characterizes the inherent semantics of the relationship, in
particular in terms of the semantics of creation, update, and deletion of objects
involved in the relationship.

A graphical notation for a generic relationship includes a notation for par-
ticipating classes and for the relationship itself. Notations of a varying degree of
detail can be defined for participation constraints linked with cardinality (see,
e.g., [24]).

The identification and definition of new relationships should carefully explore
and characterize their similarities and interactions with existing relationships
[10].

30 M. Dahchour, A. Pirotte, and E. Zimányi

8 A Refined Metamodel for Relationships

This section presents our metamodel for generic relationships, based on their
semantics as presented in Sections 4 and 5. Its general structure is shown in
Figure 22. It is an elaborated version of the hierarchy in Figure 3.

(3,n)

NaryRelationshipBasicBinaryRelationship

RoleGenera−
lization

Materia−
lization

BinaryGenericRelationship BinaryAssociation

AsymmetricRelshp

SymmetricRelshp

TransitiveAggr

degreedegree = 2 degree > 2

partitioning

transitivity

(BBR)

(0,1)nonrecursivity
class

Ownership

NonTransitiveAggr

Is−of

TransitiveRel Aggregation NonTransitiveRel PartitionedRel

Grouping

NonPartitionedRel

class transitivity
RecursiveRel

Non
RecursiveRel

Relationship

Fig. 22. Our metamodel of generic relationships

Metatype Relationship denotes all kinds of generic relationships. The first
partitioning, on the top of the hierarchy, is based on the degree of relationships.
We distinguish binary relationships, represented in the figure by metatype Ba-
sicBinaryRelationship, and n-ary relationships, represented by metatype NaryRe-
lationship. BasicBinaryRelationship represents the basic binary relationship BBR
described in Section 4. BasicBinaryRelationship is specialized in SymmetricRelshp
and AsymmetricRelshp representing, respectively, symmetric and asymmetric re-
lationships.

Metatype BasicBinaryRelationship is in turn classified in two categories: Bina-
ryGenericRelationship representing binary generic relationships described in Sec-
tion 5 and BinaryAssociation representing binary associations. This decomposi-
tion is needed for the following two reasons. First, as seen in Section 5, binary
generic relationships (e.g., generalization, materialization, aggregation) can be
described along dimensions such as multiplicity, composition, class transitivity,
class nonrecursivity, and partitioning. These properties do not concern binary
associations represented by metatype BinaryAssociation. Second, an n-ary rela-
tionship, represented by metatype NaryRelationship, is defined as an aggregate

Generic Relationships in Information Modeling 31

of three or more binary associations. Note that NaryRelationship cannot be de-
fined as an aggregate of BBR, because the latter also accounts for binary generic
relationships such as generalization, aggregations, etc., that cannot compose an
n-ary relationship.

Binary generic relationships are classified along class transitivity, class non-
recursivity, and partitioning, which only apply to some generic relationships.

Class-transitive relationships are grouped under category TransitiveRel while
nontransitive ones go under category NonTransitiveRel. Aggregation cannot be
directly placed under TransitiveRel nor under NonTransitiveRel because some of
its categories are class transitive and others are not. The former are gathered
under metatype TransitiveAggr and the latter under metatype NonTransitiveAggr.
TransitiveAggr and NonTransitiveAggr are defined as subclasses of TransitiveRel
and NonTransitiveRel, respectively. Similarly, recursive and nonrecursive generic
relationships are represented in the metamodel by metatypes RecursiveRel and
NonrecursiveRel.

In parallel to the specialization of binary generic relationships along the di-
mensions of class transitivity and class nonrecursivity, their specialization along
the partitioning dimension gives rise to two metatypes: PartitionedRel repre-
senting binary generic relationships (e.g., generalization, aggregation, role, and
grouping) which may be organized in several partitions along several discrimi-
nators and NonPartitionedRel representing relationships which may not.

This metamodel can be enriched if other dimensions for classifying binary
generic relationships are identified.

9 Conclusion

This paper has discussed relationships in information modeling. We first defined
a basic binary relationship BBR that both defines binary associations and repre-
sents the common semantics of generic relationships. The semantics of BBR was
defined along several dimensions, including cardinality, existence dependency, ex-
clusiveness and inclusion, symmetry and asymmetry, instance transitivity, and
attribute propagations.

We then defined binary generic relationships as specializations of BBR and
characterized them along several important dimensions like class and instance
semantics, multiplicity, composition, class transitivity, class nonrecursivity, and
partitioning. Then, several generic relationships were reviewed in the light of
those dimensions. Therefore, instead of defining the semantics of generic rela-
tionships in an ad-hoc manner as is often done, those dimensions provide a useful
support for a clear and systematic definition.

We also discussed how new generic relationships can be identified and defined.
A new generic relationship should correspond to a significant number of specific
instances validated in application domains, its semantics should be formalized
according the dimensions above, and it should be associated with an appropriate
graphical notation. The identification and definition of new relationships should
carefully explore and characterize their similarities with existing relationships.

32 M. Dahchour, A. Pirotte, and E. Zimányi

Finally, we defined a new metamodel for generic relationships based on their
semantics.

We are currently comparing our metamodel for relationships with that pro-
posed in UML 2.0. The study would result in the extension of UML with new
generic relationships that have no equivalent in UML such as role-of and mate-
rialization.

References

1. J. Abrial. Data semantics. In Proc. of the IFIP Working Conf. on Data Base
Management, pages 1–59. North-Holland, 1974.

2. A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An object data model with
roles. In Proc. of the 19th Int. Conf. on Very Large Data Bases, VLDB’93, pages
39–51. Morgan Kaufmann, 1993.

3. E. Andonoff, G. Hubert, and A. Le Parc. Modeling inheritance, composition and
relationship links between objects, object versions and class versions. In Proc.
of the 7th Int. Conf. on Advanced Information Systems Engineering, CAiSE’95,
LNCS 932, pages 96–111. Springer-Verlag, 1995.

4. M. Brodie. Association: A database abstraction. In P. Chen, editor, Entity-
Relationship Approach to Information Modeling and Analysis, pages 583–608.
North-Holland, 1981.

5. R. Cattell, D. Barry, M. Berler, and J. Eastman, editors. The Object Data Standard:
ODMG 3.0. Morgan Kaufmann, 2000.

6. W. Chu and G. Zhang. Associations and roles in object-oriented modeling. In
Proc. of the 16th Int. Conf. on Conceptual Modeling, ER’97, LNCS 1331, pages
257–270. Springer-Verlag, 1997.

7. P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou, editors. Proc. of the 8th

Int. Conf. on Advanced Information Systems Engineering, CAiSE’96, LNCS 1080.
Springer-Verlag, 1996.

8. M. Dahchour. Integrating Generic Relationships into Object Models Using Meta-
classes. PhD thesis, Département d’ingénierie informatique, Université catholique
de Louvain, Belgium, 2001.

9. M. Dahchour, A. Pirotte, and E. Zimányi. Materialization and its metaclass imple-
mentation. IEEE Trans. on Knowledge and Data Engineering, 14(5):1078–1094,
2002.

10. M. Dahchour, A. Pirotte, and E. Zimányi. A role model and its metaclass imple-
mentation. Information Systems, 29(3):235–270, 2004.

11. K. Davis, G. Dong, and A. Heuer. Discussion report: Object migration and classifi-
cation. In Proc. of the 4th Int. Workshop on Foundations of Models and Languages
for Data and Objects, pages 223–227. Springer-Verlag, 1992.

12. D. Firesmith, B. Henderson-Sellers, and I. Graham. OPEN Modeling Language
OML Reference Manual. SIGS Books, 1997.

13. G. Gottlob, M. Schrefl, and B. Röck. Extending object-oriented systems with roles.
ACM Trans. on Office Information Systems, 14(3):268–296, 1996.

14. R. Gupta and G. Hall. An abstraction mechanism for modeling generation. In
Proc. of the 8th Int. Conf. on Data Engineering, ICDE’92, pages 650–658. IEEE
Computer Society, 1992.

15. G. Hall and R. Gupta. Modeling transition. In Proc. of the 7th Int. Conf. on Data
Engineering, ICDE’91, pages 540–549. IEEE Computer Society, 1991.

Generic Relationships in Information Modeling 33

16. M. Halper, J. Geller, and Y. Perl. An OODB part-whole model: Semantics, nota-
tion, and implementation. Data & Knowledge Engineering, 27(1):59–95, 1998.

17. M. Halper, Y. Perl, O. Yang, and J. Geller. Modeling business applications with the
OODB ownership relationship. In Proc. of the 3rd Int. Conf. on AI Applications
on Wall Street, pages 2–10, 1995.

18. T. Halpin. Information Modeling and Relational Databases: From Conceptual Anal-
ysis to Logical Design. Morgan Kaufmann, 2001.

19. B. Henderson-Sellers. OPEN relationships: Compositions and containments. Jour-
nal of Object-Oriented Programming, 10(7):51–55, 1997.

20. T. Jones and I. Song. Binary equivalents of ternary relationships in entity-
relationship modeling: A logical decomposition approach. Journal of Database
Management, 11(2):12–19, 2000.

21. R. Katz. Towards a unified framework for version modeling in engineering
databases. ACM Computing Surveys, 22(4):375–408, 1990.

22. W. Kim, E. Bertino, and J. Garza. Composite objects revisited. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data, SIGMOD’89, pages 337–347,
1989. SIGMOD Record 18(2).

23. M. Kolp. A Metaobject Protocol for Integrating Full-Fledged Relationships into
Reflective Systems. PhD thesis, INFODOC, Université Libre de Bruxelles, Belgium,
1999.

24. M. Kolp and A. Pirotte. An aggregation model and its C++ implementation.
In Proc. of the 4th Int. Conf. on Object-Oriented Information Systems, OOIS’97,
pages 211–224, 1997.

25. Y. Lahlou and N. Mouaddib. Relaxing the instantiation link: Towards a content-
based data model for information retrieval. In Constantopoulos et al. [7], pages
540–561.

26. A. Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering, Special
Issue on Managing Inconsistency in Software Development, 24(11):908–926, 1998.

27. H. Lieberman. Using prototypical objects to implement shared behavior in object
oriented systems. In Proc. of the Conf. on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA’86, pages 214–223, 1986. ACM SIGPLAN
Notices 21(11), 1986.

28. T. Ling. A normal form for entity-relationship diagrams. In Proc. of the 4th Int.
Conf. on the Entity-Relationship Approach, ER’85, pages 24–35, 1985.

29. N. Mattos. Abstraction concepts: The basis for data and knowledge modelling.
In Proc. of the 7th Int. Conf. on the Entity-Relationship Approach, ER’88, pages
473–492, 1988.

30. R. Motschnig-Pitrik and J. Kaasboll. Part-whole relationship categories and their
application in object-oriented analysis. IEEE Trans. on Knowledge and Data En-
gineering, 11(5):779–797, 1999.

31. R. Motschnig-Pitrik and J. Mylopoulos. Classes and instances. International Jour-
nal of Intelligent and Cooperative Information Systems, 1(1):61–92, 1992.

32. R. Motschnig-Pitrik and J. Mylopoulos. Semantics, features, and applications of
the viewpoint abstraction. In Constantopoulos et al. [7], pages 514–539.

33. R. Motschnig-Pitrik and V. Storey. Modelling of set membership: The notion and
the issues. Data & Knowledge Engineering, 16(2):147–185, 1995.

34. J. Mylopoulos. Information modeling in the time of the revolution. Information
Systems, 23(3–4):127–155, 1998.

34 M. Dahchour, A. Pirotte, and E. Zimányi

35. J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing
knowledge about informations systems. ACM Trans. on Office Information Sys-
tems, 8(4):325–362, 1990.

36. J. Odell. Six different kinds of composition. Journal of Object-Oriented Program-
ming, 6(8):10–15, 1994.

37. C. Parent, S. Spaccapietra, and E. Zimányi. Conceptual Modeling for Traditional
and Spatio-Temporal Applications: The MADS approach. Springer, 2005, to appear.

38. J. Peckham, B. MacKellar, and M. Doherty. Data model for extensible support
of explicit relationships in design databases. Very Large Data Bases Journal,
4(2):157–191, 1995.

39. A. Pirotte, E. Zimányi, D. Massart, and T. Yakusheva. Materialization: a powerful
and ubiquitous abstraction pattern. In Proc. of the 20th Int. Conf. on Very Large
Data Bases, VLDB’94, pages 630–641, 1994. Morgan Kaufmann.

40. D. Renouf and B. Henderson-Sellers. Incorporating roles into MOSES. In Proc. of
the 15th Conf. on Technology of Object-Oriented Languages and Systems, TOOLS
15, pages 71–82, 1995.

41. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language: Refer-
ence Manual. Addison-Wesley, second edition, 2004.

42. V. Storey. Understanding semantic relationships. Very Large Data Bases Journal,
2(4):455–488, 1993.

43. T. Teorey. Database Modeling and Design. Morgan Kaufmann, third edition, 1999.
44. J. Wäsch and K. Aberer. Flexible design and efficient implementation of a hyper-

media document database system by tailoring semantic relationships. In Proc. of
the IFIP WG2.6 6th Working Conf. on Database Semantics, DS-6, pages 367–388.
Chapman & Hall, 1995.

45. R. Wieringa, W. De Jonge, and P. Spruit. Using dynamic classes and role classes
to model object migration. Theory and Practice of Object Systems, 1(1):61–83,
1995.

46. M. Winston, R. Chaffin, and D. Herrmann. A taxonomy of part-whole relations.
Cognitive Science, 11(4):417–444, 1987.

47. R. Wong, H. Chau, and F. Lochovsky. A data model and semantics of objects with
dynamic roles. In Proc. of the 13th Int. Conf. on Data Engineering, ICDE’97,
pages 402–411. IEEE Computer Society, 1997.

48. O. Yang, M. Halper, J. Geller, and Y. Perl. The OODB ownership relationship. In
Proc. of the Int. Conf. on Object-Oriented Information Systems, OOIS’94, pages
278–291. Springer-Verlag, 1994.

49. E. Yu, L. Liu, and Y. Li. Modelling strategic actor relationships to support in-
tellectual property management. In Proc. of the 20th Int. Conf. on Conceptual
Modeling, ER 2001, pages 164–178, 2001.

EMMA – A Formal Basis for Querying
Enhanced Multimedia Meta Objects

Sonja Zillner and Werner Winiwarter

Faculty of Computer Science,
University of Vienna,

Liebiggasse 4, A-1010 Vienna
sonja.zillner@univie.ac.at

Abstract. Today’s multimedia content formats primarily encode the
presentation of content but not the information the content conveys.
However, this presentation-oriented modeling only permits the inflexi-
ble, hard-wired presentation of multimedia content. For the realization
of advanced operations like the retrieval and reuse of content, automatic
composition, or adaptation to a user’s needs, the multimedia content
has to be enriched by additional semantic information, e.g. the seman-
tic interrelationships between single multimedia content items. Enhanced
Multimedia Meta Objects (EMMOs) are a novel approach to multimedia
content modeling, which combines media, semantic relationships between
those media, as well as functionality on the media (such as rendering) into
tradeable and versionable knowledge-enriched units of multimedia con-
tent. For the processing of EMMOs and the knowledge they incorporate,
suitable querying facilities are required. Based on the formal definition
of the EMMO model, in this paper, we propose and formally define the
EMMO Algebra EMMA, a query algebra that is adequate and complete
with regard to the EMMO model. EMMA offers a rich set of orthogonal
query operators, which are sufficiently expressive to provide access to all
aspects of EMMOs and enable efficient query rewriting and optimiza-
tion. In addition, they allow for the seamless integration of ontological
knowledge within queries, such as supertype/subtype relationships, tran-
sitive and inverse associations, etc. Thus, EMMA represents a sound and
adequate foundation for the realization of powerful EMMO querying fa-
cilities. We have finished the implementation of an EMMO container
environment and an EMMA query execution engine, and are currently
in the process of evaluating the query algebra in several case studies.

1 Introduction

For the presentation and rendering of multimedia content, there exist several
multimedia content formats, such as HTML [1], SMIL [2], or SVG [3]. Those
approaches have all in common that they merely focus on the encoding of the
content, but neglect the information the content conveys. As those multime-
dia content formats are limited to the modeling of presentation-related issues
of multimedia content, only the generation of inflexible hard-wired multimedia

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 35–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 S. Zillner and W. Winiwarter

presentations can be realized. As a prerequisite for advanced operations, such as
retrieval and reuse of content, automatic composition, and adaptation of content
to a user’s needs, additional information about the content’s semantics has to be
provided. Triggered by the research in the context of the Semantic Web initiative
[4], several attempts have been undertaken to integrate semantics into the mod-
eling of multimedia content. For recent publications on multimedia semantics
see [5], [6], [7], [8], [9], [10], an up-to-date overview is given in [11].

To facilitate the semantic modeling of multimedia content in content sharing
and collaborative applications, we have developed Enhanced Multimedia Meta
Objects (EMMOs) [12] in the context of the EU-funded CULTOS project1. An
EMMO establishes a self-contained unit of multimedia content indivisibly unify-
ing three aspects of multimedia content: The media aspect aggregates the basic
media objects of an EMMO, the semantic aspect enables the specification of
semantic associations between an EMMO’s media objects, and finally the func-
tional aspect permits EMMOs to define arbitrary, domain-specific operations
that can be invoked by applications. Moreover, by providing versioning support,
EMMOs can be modified concurrently within a distributed environment. As all
three aspects of multimedia content and the versioning information can be bun-
dled into one unit and serialized into an exchangeable format, EMMOs establish
tradeable, semantically enriched units of multimedia content.

In contrast to common approaches for the representation of multimedia con-
tent, as well as existing standards for modeling the content’s semantics, EMMOs
establish a unique way for the semantic modeling of multimedia content. Popular
standards for multimedia document models, such as HTML [1], XHTML+SMIL
[13], HyTime [14], MHEG-5 [15], MPEG-4 BIFS and XMT [16], SMIL [2], or SVG
[3], model the presentation of content by arranging basic media objects according
to temporal, spatial, and interaction relationships. Therefore, they mainly cover
the content’s media aspect, but disregard the semantic and functional aspects of
content, and provide no versioning support. Standards for modeling semantics,
such as RDF [17, 18], Topic Maps [19], MPEG-7 (especially MPEG-7’s Graph
tools for the description of content semantics [20]), or Conceptual Graphs [21],
clearly provide means for describing the semantic aspect of content. However,
they rather neglect the media aspect and functional aspect, and also do not
provide versioning support.

Within the CULTOS project, a distributed infrastructure of EMMO con-
tainers [22] and an authoring tool for the creation of EMMOs were developed.
For the realization of advanced operations on EMMOs, efficient retrieval and
processing of the information captured by EMMOs was still missing after the
completion of the CULTOS project. Therefore, we have developed the query
algebra EMMA, which provides a formal basis for querying EMMOs.

1 CULTOS was carried out from 2001 to 2003 by partners from 11 EU countries and
Israel. It aimed at providing a collaborative multimedia platform for researchers in
intertextual studies enabling them to share and communicate their knowledge about
the relationships between cultural artifacts. See http://www.cultos.org for more
information.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 37

The contribution of this paper is to introduce the formal foundation of the
query algebra EMMA. The paper builds on, revises, and extends previous re-
search work published in [12], [23], and [24]. By addressing an EMMO’s media,
semantic, and functional aspect, as well as its versioning information, EMMA
is adequate and complete with regard to the EMMO model. EMMA comprises
an extensive set of simple and orthogonal query operators (extraction operators,
navigational operators, selection predicates, constructors, and a join operator),
which allow the construction of more complex queries against EMMOs, thus
providing the basis for efficient query rewriting and optimization.

The remainder of the paper is organized as follows. Section 2 introduces
and formally defines the EMMO model, Sect. 3 discusses the requirements of
a query algebra for EMMOs. Section 4 takes a look at related approaches and
Sect. 5 introduces a representative selection of EMMA’s formal foundation along
with illustrative examples. Section 6 briefly introduces the EMMO and EMMA
implementation and, finally, Sect. 7 concludes this paper and gives an outlook
on future work.

2 The EMMO Model

As mentioned before, EMMOs establish tradable, knowledge-enriched units of
multimedia content that indivisibly combine the content’s media, semantic, and
functional aspect, as well as its versioning information into one single object.

The formal components of the EMMO model are entities, which occur in
four different kinds – logical media parts representing media objects or parts of
media objects, ontology objects representing concepts of an ontology, associations
modeling binary relationships between entities, and EMMOs establishing an
aggregation of semantically related entities.

In the following subsections, we formally define entities and their four spe-
cializations and use real-world example EMMOs originating from the CULTOS
project (see [25]) to illustrate the EMMO model. Moreover, to exemplify the
integration of domain knowledge, we use an extended version of the Ontology of
Intertextual Studies [26].

2.1 Entities

Each entity w is characterized by thirteen properties:

– Each entity w has a global and unique object identifier (OID) ow represented
as universal unique identifier (UUID) [27], which enables the unique identi-
fication of entities in distributed scenarios.

– As UUIDs are not really useful for humans, each entity w has also a human
readable name nw expressed as string value.

– For classifying whether an entity w is a logical media part, an ontology
object, an association, or an EMMO, its kind kw is specified accordingly.

38 S. Zillner and W. Winiwarter

Hooper

Director

Dracula Movies
inspire inspire

Salem’s Lot

http://.../Salem183.avi

Movie

http://.../Salem112.avi

The Cabinet of
Dr. Caligari

MovieWiene

Director

Nosferatu

http://../Nosferatu.mpeg

Movie

Murnau

Director

duration: 183min
format: AVI
.....

duration: 112min
format: AVI
.....

RenderingImplementation

Rendering

http://../Caligari.mpeg

logical media part

ontology object

association

EMMO

connector

attribute

operation

entity-type

Symbols:

PaymentImplementation

Payment

feature

Timestamp: 200412230056

temporal:
begin:0
duration: 26

fullformat : MPEG
......

format : MPEG
......

full

full

Work-in-Progress

Fig. 1. EMMO“Dracula Movies” (emovies)

– Each entity w is described by a set of types Tw, i.e. a set of ontology ob-
jects, enabling the classification by concepts taken from a domain ontology,
e.g. entity w might be an instantiation of the concepts “Ancient Text” and
“Novel”, or an instantiation of the concept “Movie”. The semantics of on-
tology objects is specified in the underlying domain ontology, e.g. within the
ontology structure represented in Fig. 2.

– Each entity possesses an arbitrary number of application-dependent
attributes Aw. Attributes are represented as attribute-value pairs with the
attribute name being a concept of a domain ontology, e.g. by attaching the
value “Murnau” for the attribute “Director” to the entity representing the
movie “Nosferatu” (see Fig. 1), one can express that the movie was directed
by Murnau. The attribute value is per default untyped, however, typing
constraints can be introduced via the domain ontology (see Fig. 2).

– For providing versioning support, a set of preceding versions Pw and suc-
ceeding versions Sw can be assigned to each entity w. Each version of w is
again an entity of the same kind kw. By also treating an entity’s versions as
entities, different versions of an entity can be interrelated just like any other
entities, thus allowing one to establish relationships between entity versions.
Figure 3 shows several versions of the EMMO “Dracula Movies” and their
interrelationships.

– As it might be necessary in an implementation of the model, to augment
an entity w with further low-level data, such as timestamps or status infor-

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 39

retell

inspire rework

globally-allude

Domain

inverse
is-retold

Long TextAncient Text

Novel

object concept

relational concept

Symbols:

inverse inverse conceptsSubConcept

symmetric concept

Domain

domain of
a concept transitive concept

Written Text

Text

Audio-Visual Text

Movie

Person

DirectorResearcher

State

Work-in -ProgressDiscussion

Range

range of
a concept

Range

assert

essential extension

Domain

Range

Domain

Attribute-Domain

domain of
attribute

Attribute-
Domain

Fig. 2. Graphical representation of a part of an Ontology of Intertextual Studies

mation, in a flexible, ad-hoc manner, a set of features Fw, represented as
feature-value pairs, can be attached to the entity. In contrast to attributes,
feature names are not ontology objects but simple strings.

As the remaining properties of an entity w are only relevant for certain kinds
of entities, at this point we will only provide a brief explanation as far as it is
necessary for the understanding of the following definitions; we will provide more
detailed definitions and examples in the following subsections.

– By specifying exactly one source and target entity sw and tw, an association
establishes a directed binary relationship between those entities.

– The connectors Cw establish a connection to the physical media data of a
logical media part. Each connector consists of a media profile which describes
the storage location by either embedding the raw media data or by referenc-
ing the media data via a URI, and of a media selector, which provides means
to address only selected parts of the media object.

– An EMMO constitutes a container of all entities specified in the set nodes
Nw.

40 S. Zillner and W. Winiwarter

succpred

Dracula Movies V1

pred succ

Dracula Movies V2

Dracula Movies V3

Dracula Movies

pred succ

Fig. 3. The versioning information of EMMO “Dracula Movies”

– An EMMO offers operations Ow, which can be invoked by external applica-
tions. The implementation of an operation is described by a mathematical
function.

After this informal intuitive description, we are now ready to provide a formal
definition of an entity. First we define some basic symbols we will use throughout
the rest of this paper.

Definition 1. [Symbols] Let Γ denote the set of all logical media parts, Θ the
set of all ontology objects, Λ the set of all associations, Σ the set of all Emmos,
and Ω = Γ ∪ Θ ∪Λ∪ Σ the set of all entities. Further, let MS be the set of all
media selectors, MP the set of all media profiles, OP the set of all operations.
Finally, let VAL be the set of all untyped data values, UUID ⊂ VAL the set of
all universal unique identifiers, STR ⊂ VAL the set of all strings, URI ⊂ STR

the set of all uniform resource identifiers, RMD the set of all raw media data,
and FUN the set of all functions.

On the basis of these common symbols, we define entities as follows.

Definition 2. [Entity] An entity w ∈ Ω is a thirteen-tuple
w = (ow , nw, kw, sw, tw, Tw, Aw, Cw, Nw, Pw, Sw, Fw, Ow), where ow ∈ UUID

denotes the unique object identifier (OID) of w, nw ∈ STR the name of w,
kw ∈ {“lmp”, “ont”, “asso”, “emm”} the kind of w, sw ∈ Ω ∪ {ε} the source
and tw ∈ Ω ∪{ε} the target entity of w with ε �∈ Ω stating that such an entity is
undefined, Aw ⊆ Θ ×VAL the attributes, Tw ⊆ Θ the types, Cw ⊆MS×MP
the connectors, Nw ⊆ Ω the nodes, Pw ⊆ Ω the predecessors, Sw ⊆ Ω the
successors, Fw ⊆ STR × VAL the features, and Ow ⊆ OP the operations of w.
The following constraints hold for all entities:

∀w1, w2 ∈ Ω : ow1 = ow2 −→ w1 = w2 (1)

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 41

∀w, v ∈ Ω : v ∈ Pw ∨ v ∈ Sw −→ kw = kv (2)

Constraint (1) enforces that each entity has a unique identifer and Constraint
(2) assures that each version of w is again an entity of the same kind kw.

2.2 Logical Media Parts

Logical media parts are entities which enable the representation of media ob-
jects or parts of media objects at a logical level, and thus address an EMMO’s
media aspect. By decoupling the logical media part from any existing physical
representation, a person who is not owing a media object can still use it within
an EMMO. To express the difference between, for example, the movie “Salem’s
Lot” directed by Tobe Hooper and its underlying source material, the novel
“Salem’s Lot” written by Stephen King, the movie and the novel are modeled
as two different logical media parts.

Definition 3. [Logical media part] A logical media part l ∈ Γ is an entity with
kl = ”lmp” ∧ sl = tl = ε ∧ Nl = Ol = ∅.

By means of connectors Cw , logical media parts not only model media objects
at a logical level but additionally maintain connections to physical media data
representing these objects, and thus provide the media aspect of multimedia
content represented within the EMMO model. Connectors (see Def. 2) consist
of a media profile representing the physical media data and of a media selector
addressing the parts of the media data represented by the profile according to
textual, spatial, and temporal criteria.

As formally defined in Def. 4, a media profile combines the storage location,
which is called – following the MPEG-7 terminology – media instance, with low-
level metadata, such as storage format or file size. The media instance either
directly embeds media data or – if embedding is not feasible, e.g. because the
media data is a live stream – references media data via a URI.

Definition 4. [Media profile] A media profile mp = (imp, Mmp) ∈ MP is de-
scribed by its media instance imp ∈ URI ∪ RMD and its metadata
Mmp ⊆ STR × VAL .

Media selectors (see Def. 5) render it possible to address only selected parts
of the physical media data, such as the introductory section of a movie from the
first until the 26th minute, without having to extract that part, for instance, by
putting the scene into a separate file using an audio editing tool.

Definition 5. [Media selector] A media selector ms = (kms, Pms) ∈ MS is
described by its kind kms ∈ {“spatial”, “textual”, “temporal”, “full”} and by
its parameters Pms ⊆ STR × VAL .

In Example 1 we illustrate how the three logical media parts depicted in
Fig. 1 representing the media objects “The Cabinet of Dr. Caligari”, “Nosfer-
atu”, and “Salem’s Lot” can be formally described within the EMMO model. The

42 S. Zillner and W. Winiwarter

symbols lcaligari, lnosferatu, and lsalem represent the three logical media parts. For
example, the thirteen-tuple lcaligari indicates that there exists an entity which is
uniquely identified by the OID “l2471”, is named “The Cabinet of Dr. Caligari”,
is of kind logical media part (“lmp”), specifies no source and target entity, is clas-
sified as “Movie”, has the value “Wiene” for the attribute “Director”, describes
its physical media data by the connector (ms1, mp1), is augmented by its times-
tamp information, and specifies its sets of nodes, predecessors, successors, and
operations as empty. The connector (ms1, mp1) references the temporal selec-
tion of the first 26 minutes from the MPEG-movie “Caligari.mpeg”. (ms2, mp2)
represents the connector of the logical media part lnosferatu associating the com-
plete MPEG-movie “Nosferatu.mpeg”, and, finally, (ms3, mp3) and (ms4, mp4)
represent two versions of different length of the movie “Salem’s Lot”.

Example 1.

lcaligari =(“l2471”, “The Cabinet of Dr. Caligari”, “lmp”, ε, ε, {omovie}, {(odirector, “Wiene”)},

{(ms1, mp1)}, ∅, ∅, ∅, {(“timestamp”, “200412230056”)}, ∅),
lnosferatu =(“l9462”, “Nosferatu”, “lmp”, ε, ε, {omovie}, {(odirector, “Murnau”)},

{(ms2, mp2)}, ∅, ∅, ∅, ∅, ∅),
lsalem =(“l6231”, “Salem’s Lot”, “lmp”, ε, ε, {omovie}, {(odirector, “Hooper”)},

{(ms3, mp3), (ms4, mp4)}, ∅, ∅, ∅, ∅, ∅),
ms1 =(“temporal”, {(“begin”,0), (“duration”,26)}),
mp1 =(“www.../Caligari.mpeg”, {(“format”, “MPEG”)}),
ms2 =(“full”, ∅),
mp2 =(“www.../Nosferatu.mpeg”, {(“format”, “MPEG”)}),
ms3 =(“full”, ∅),
mp3 =(“www.../Salem183.avi”, {(“format”, “AVI”), (“duration”, 183)}),
ms4 =(“full”, ∅),
mp4 =(“www.../Salem112.avi”, {(“format”, “AVI”), (“duration”, 112)}).

2.3 Ontology Objects

Ontology objects are entities that represent concepts of an ontology. By pro-
viding the basis for the description of entities and other properties by concepts
taken from an ontology, ontology objects contribute to the semantic aspect of
multimedia content modeling. Within the EMMO model, ontology objects are
applied in four different ways, i.e. they are used:

– for designating the types of entities,
– for designating the attributes of attribute values,
– for designating the operations attached to EMMOs (see Def. 9),
– as nodes within the EMMO knowledge structure (see Sect. 2.5).

Definition 6. [Ontology object] An ontology object o ∈ Θ is an entity with
ko = ”ont” ∧ so = to = ε ∧Co = No = Oo = ∅.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 43

Murnau

Director

Nosferatu

Dracula Studies

inspire retell

PaymentImplementation

Payment

Movie
Vampyre

1819

Creationdate

Dracula

Novel

Stoker

Author
Ancient Text

http://.../Vampyre.txt http://.../Dracula.pdf

format : PDF
......

http://.../Nosferatu.mpeg

format : MPEG
......

full fullfullformat : txt
......

Open-to-Comments

Fig. 4. EMMO “Dracula Studies”(estudies)

As can be seen from Def. 6, the types To of an ontology object o can be a non-
empty set, i.e. ontology objects can again be classified by other ontology objects.
This provides the basis for expressing ontological structures within the EMMO
model. The development of a dedicated ontology engineering environment is
focus of future work (see [28], [29], [30]). The final aim is the seamless integration
of ontological knowledge into the EMMO model.

In Example 2 all four different ways of using ontology objects are illustrated:
Within the EMMOs “Dracula Studies” and “Dracula Research”(see Fig. 4 and
Fig. 5), ontology object oinspire represents the type of the association connect-
ing the two logical media parts “Vampyre” and “Dracula”, ontology object
omovie the type of the logical media part “Nosferatu”; ontology object odirector

is used as name of the attribute attached to the logical media part “Nosfer-
atu”, and ontology object opayment represents the designator of the operation
provided by EMMO “Dracula Studies”. Moreover, the ontology object omiller,
which represents the concept “Elizabeth Miller”, is specified as node contained
within EMMO “Dracula Research”, and by additionally typing this ontology
object with the ontology object oresearcher, “Elizabeth Miller” is classified as
“Researcher”.

Example 2.

oinspire =(“o8421”, “inspire”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
omovie =(“o4302”, “Movie”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

odirector =(“o3418”, “Director”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
opayment =(“o6445”, “Payment”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

omiller =(“o3021”, “Elizabeth Miller”, “ont”, ε, ε, {oresearcher}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
oresearcher =(“o2166”, “Researcher”, “ont”, ε, ε, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅).

44 S. Zillner and W. Winiwarter

Dracula Movies V3

essential extension

assert

Researcher

Elizabeth
Miller

Dracula Research

Dracula Movies

Dracula Studies

contradict

Discussion

Fig. 5. EMMO “Dracula Research”(eresearch)

2.4 Associations

Associations describe binary directed semantic relationships between entities.
Thus, they contribute to the semantic aspect of multimedia content. By being
modeled as entities, associations can take part in other associations, and thus
facilitate the reification of statements in the EMMO model.

Definition 7. [Association] An association a ∈ Λ is an entity with ka = ”asso”
∧ sa �= ε ∧ ta �= ε ∧ Ca = Na = Oa = ∅ ∧ |Ta| = 1.

Similar to other entities, an association’s type is represented by an ontology
object and determines the kind of semantic relationship. Different from other
entities, however, an association can only associate one type because it is sup-
posed to represent only a unique kind of relationship. By specifying exactly one
source and one target entity sa and ta, each association establishes a directed
binary relationship between those two entities.

Example 3 shows the formal description of the two associations aca→no and
ano→sa contained within EMMO “Dracula Movies”(Fig. 1) and of the four asso-
ciations amo→moV 3, amoV 3→st, ami→(mo→moV 3), and ami→(moV 3→st) contained
within EMMO “Dracula Research”(Fig. 5). Association amo→moV 3 models that
EMMO “Dracula Movies V3” is an essential extension of EMMO “Dracula
Movies”, and by expressing that this statement was asserted by “Elizabeth
Miller”, association ami→(mo→moV 3) exemplifies the reification of statements.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 45

Example 3.

aca→no =(“a0225”, “ca → no”, “asso”, lcaligari, lnosferatu, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
ano→sa =(“a5461”, “no → sa”, “asso”, lnosferatu, lsalem, {oinspire}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

amo→moV 3 =(“a6390”, “mo → moV 3”, “asso”, emovies, emoviesV3, {oessential-extension}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
amoV 3→st =(“a5461”, “moV 3 → st”, “asso”, emoviesV3, estudies, {ocontradict}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),

ami→(mo→moV 3) =(“a4771”, “mi → (mo → moV 3)”, “asso”, omiller, amo→moV 3, {oassert}, ∅, ∅, ∅, ∅, ∅, ∅, ∅),
ami→(moV 3→st) =(“a7031”, “mi → (moV 3 → st)”, “asso”, omiller, amoV 3→st, {oassert}, ∅, ∅, ∅, ∅, ∅, ∅, ∅).

2.5 EMMOs

An EMMO constitutes the core component of our model. It is a container that
combines several entities into a single unit. By aggregating media data (i.e. logi-
cal media parts) and enriching this media data by semantic data (i.e. associations
and ontology objects), an EMMO addresses the media and semantic aspect of
multimedia content modeling. For instance, EMMO “Dracula Movies” groups
the semantic descriptions of the logical media parts “The Cabinet of Dr. Cali-
gari”, “Nosferatu”, and “Salem’s Lot” into one single unit. Since EMMOs are
modeled as entities, EMMOs can be contained within other EMMOs, just as any
other entity. Therefore, a structure of hierarchically nested EMMOs can be estab-
lished: EMMO “Dracula Research” in Fig. 5, for example, contains the EMMOs
“Dracula Movies”, “Dracula Movies V3”, and “Dracula Studies”. Furthermore,
an EMMO can also take part in associations, facilitating the representation of
knowledge about the EMMO. For instance, within EMMO “Dracula Research” it
is stated that EMMO “Dracula Movies V3” contradicts EMMO “Dracula Stud-
ies”. Finally, by specifying operations that process its content, EMMOs address
the functional aspect of multimedia content.

Definition 8. [EMMO] An EMMO e ∈ Σ is an entity with ke = ”emm”, and
se = te = ε ∧ Ce = ∅, such that

∀x ∈ Ne : kx = ”asso” −→ {sx, tx} ⊆ Ne (3)

According to this definition, an EMMO e constitutes a container of other
entities because its set of nodes Ne is not restricted to an empty set, as it is
the case with other kinds of entities. The contained entities form a connected
graph structure when they are interlinked by associations. Constraint 3 ensures
that associations can specify only those entities as source or target entity which
already belong to the EMMO’s nodes, and thus, guarantees that any established
relationship is fully contained within the EMMO.

A further difference between EMMOs and the other kinds of entities is that
its set of operations is not necessarily empty, allowing an EMMO to associate
arbitrary operations. Within the EMMO model, an operation is a tuple combin-
ing an ontology object acting as the operation’s designator with the operation’s
implementation, which can be described by any mathematical function.

46 S. Zillner and W. Winiwarter

Definition 9. [Operation] An operation op = (dop, iop) ∈ OP is described by its
designator dop ∈ Θ and its implementation iop ∈ FUN .

In Example 4, finally, the three EMMOs “Dracula Movies”, “Dracula Stud-
ies”, and “Dracula Research” are formally described: EMMO “Dracula Movies”
consists of five nodes, i.e. the three logical media parts “The Cabinet of Dr. Cali-
gari”, “Nosferatu”, and “Salem’s Lot”, and two associations; it defines EMMO
“Dracula Movies V1” and EMMO “Dracula Movies V2” as its direct succes-
sor versions (see Fig. 3), and specifies the functions frender implementing a
“rendering” operation and fpayment implementing a “payment transaction” op-
eration. EMMO “Dracula Studies” aggregates five entities, i.e. the three logical
media parts “Vampyre”, “Dracula”, and “Nosferatu”, as well as two associa-
tions, and offers a payment functionality. Finally, EMMO “Dracula Research”
consists of eight nodes, i.e. the EMMOs “Dracula Movies”,“Dracula Movies V3”,
and “Dracula Studies”, the ontology object “Elizabeth Miller”, and four associ-
ations.

Example 4.

emovies =(“e7921”, “Dracula Movies”, “emm”, ε, ε, {owork-in-progress}, ∅, ∅, {lcaligari, lnosferatu, lsalem,

aca→no, ano→sa}, ∅, {emoviesV1, emoviesV2}, ∅, {(orender, frender), (opayment, fpayment)}),
estudies =(“e3811”, “Dracula Studies”, “emm”, ε, ε, {oopen-to-discussion}, ∅, ∅,

{lvampyre, ldracula, lnosferatu, ava→dr, adr→no}, ∅, ∅, ∅, {(opayment, fpayment)}),
eresearch =(“e1411”, “Dracula Research”, “emm”, ε, ε, {odiscussion}, ∅, ∅, {emovies, emoviesV3, estudies,

omiller, amo→moV 3, amoV 3→st, ami→(mo→moV 3), ami→(moV 3→st)}, ∅, ∅, ∅, ∅).

The integration of ontology knowledge enables to restrict the usage of associa-
tions and attributes, i.e. to define constraints on the knowledge structures within
EMMOs. For example, by specifying the ontology represented in Fig. 2 as under-
lying domain ontology, it is determined that associations of type “retell” describe
relationships pointing from entities of type “Written Text” to entities of type
“Audio-Visual Text”. Within the axioms of the ontology, it can be additionally
specified that integrity constraints on associations are extended to subconcepts,
i.e. specifying entities of type “Audio-Visual Text” as permitted target entities
then also includes entities of type “Movie” as permitted value. Moreover, within
the ontology, one can specify the permitted domain of attributes, i.e. the types
of entities to which they can be attached, for instance, the concept “Director”
can only be used as attribute for entities of type “Audio-Visual Content”.

3 Requirements of a Query Algebra for EMMOs

For the realization of advanced operations on EMMO structures, a formal basis
for querying of EMMOs, i.e. an algebra providing a set of formal query operators
suitable for the EMMO model, is needed. The EMMO model has no inherent
semantics, i.e. the particular semantics of an application scenario implementing
the EMMO model is derived from the integrated domain ontology. Therefore,

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 47

the requirements for accessing the information captured by EMMOs result from
structural and syntactical issues, and have to be seen as being independent
from the semantics of any particular application scenario. In the following, we
introduce the essential requirements for such a query algebra.

The most important and fundamental prerequisite of such an algebra is to
provide operators for accessing an EMMO’s three aspects and its versioning
information. Thus, the algebra has to offer operators enabling the access to:

– an EMMO’s media aspect, i.e. operators that give access to logical media
parts and their connectors;

– an EMMO’s semantic aspect, i.e. operators that facilitate the retrieval of
all kinds of entities contained in an EMMO, the querying of the types of
entities and their attribute values, as well as the traversal of associations
between entities; the operators must be expressive enough to cope with the
more advanced constructs of the EMMO model, such as the reification of
associations and the nesting of EMMOs;

– an EMMO’s functional aspect, i.e. operators that allow the access to and
permit the execution of the operations of an EMMO;

– an EMMO’s versioning information, i.e. operators for the querying of an
entity’s direct and indirect versions.

In addition, an EMMO query algebra should meet basic query algebra re-
quirements. Its operators should be formally defined with precise semantics to
provide the basis for query rewriting and optimization. Furthermore, the opera-
tors should be orthogonal and arbitrarily nestable for enabling the formulation
of expressive queries.

To combine information contained within different EMMOs, the algebra
should support joins between entities. Moreover, a suitable algebra should sup-
port some basic construction and manipulation operators, such as union, in-
tersection, and difference. However, since we have a graphical authoring tool
available, such construction and manipulation operators can be kept simple.

Finally, because the EMMO model uses concepts of an ontology (i.e. ontology
objects) to describe the meaning of the entities contained in an EMMO and the
associations between them, a suitable EMMO query algebra should be expressive
enough to integrate ontological knowledge into a query. Thus, for example, it
should be possible to consider supertype/subtype relationships, transitive or
inverse associations, etc.

A query algebra which is sufficiently expressive to fulfill all these requirements
is said to be adequate and complete with regard to the EMMO model.

4 Related Approaches

On the search for a suitable query algebra for EMMOs, we will first take a
brief look at object-oriented query approaches and query approaches for semi-
structured data and multimedia content, before we analyze query approaches for
semantic standards and examine their adequacy and completeness with regard
to the EMMO model.

48 S. Zillner and W. Winiwarter

Although object-oriented database systems establish a graph-based data
model, the object-oriented data model and the EMMO model are very different
from each other, i.e. the former operates on the schema level and gathers objects
of a particular type within one class, whereas the EMMO model operates on
the instance level, defines no object classes, and leaves the specification of the
type semantics to the integrated domain ontology. However, for accessing the
information captured by EMMOs, i.e. an EMMO’s three aspects and versioning
information, one needs an adequate EMMO query approach. Therefore, we did
not analyze query languages for object-oriented databases, such as OQL [31],
AQUA Algebra [32], or XSQL [33], in further detail.

The Object Exchange Model OEM [34] is the widely accepted data model
for semi-structured data. Similar to the EMMO model, OEM is schema-less and
describes graph structures. Nevertheless, there are many differences between the
two data models. OEM does neither address the three aspects of multimedia
content, nor provides versioning support. Therefore, query languages for semi-
structured data, such as Lorel [35], UnQL [36], SAL [37], XQuery [38], or XPath
[39], are inadequate for querying EMMOs. However, query languages for semi-
structured data provide a profound basis for graph navigation by establishing
regular path expressions. Thus, we could use those query languages as inspiration
for the design of the regular path expressions and navigational operators in
EMMA (see Sect. 5.3).

In the literature, several query algebras for multimedia content have been
proposed, such as GCalculus/S [40], Algebraic Video [41], or the Multimedia
Presentation Algebra (MPA) [42]. These algebras have in common that they
mainly address the media aspect of multimedia content. They focus on querying
the temporal and spatial relationships between the basic media of multimedia
content and the construction of new presentations out of these media. However,
they ignore semantic relationships between media as well as the functional aspect
of multimedia content.

In the context of the Semantic Web, several standards have emerged that
can be used to model the semantic relationships between the basic media of
multimedia content addressing the content’s semantic aspect, such as RDF [17,
18], Topic Maps [19], and MPEG-7 (especially MPEG-7’s Graph tools for the
description of content semantics [20]). For these standards, a variety of proposals
for query languages and algebras have been made.

Since the RDF data model, compared to the EMMO model, rather neglects
the media aspect of multimedia content, it does not address the functional as-
pect of content, and does neither provide explicit support for versioning nor
a hierarchical structuring of resource descriptions; the same is generally true
for RDF-based query approaches as well. There are quite a few proposals for
RDF query languages, such as RQL [43], SquishQL [44], or RAL [45], which
can be used for querying the semantic aspect of multimedia content, but pro-
vide no means for querying the media and functional aspect or the versioning
information of multimedia content. Thus, those approaches are incomplete and
inadequate with regard to the EMMO model.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 49

The situation for Topic Maps is quite similar to RDF. The Topic Map data
model focuses on the semantic aspect and – considering the EMMO model’s
ability to include raw media data and metadata about the media by means of
media profiles within an EMMO – neglects the media and functional aspects
of multimedia content. Moreover, although Topic Maps can be hierarchically
nested like EMMOs, they have no explicit versioning support. Consequently,
query languages for Topic Maps are also in general incomplete and inadequate
with regard to the EMMO model.

Within the context of the ongoing standardization of a Topic Maps Query
Language TMQL [46], several approaches, such as Tolog [47], TMPath [48],
XTMPath [49], or [50] have been introduced. However, those proposals remain
again on the syntactic level and do not provide formal definitions of their oper-
ators. No formal algebra as a sound foundation for the querying of Topic Maps
exists so far.

Finally, concerning the querying of semantic descriptions of multimedia con-
tent on the basis of MPEG-7’s Graph tools, there are quite a few approaches
adapting XQuery for the querying of MPEG-7 media descriptions (see [51]), but
these approaches do not provide specific operators that would allow a reasonable
processing of the Graph tools.

To summarize, looking at related work, we have not been able to find a
formally sound foundation that would allow an adequate querying of EMMOs.
Although there are some formal algebras available for querying the media as-
pect of multimedia content like GCalculus/S, Algebraic Video, or MPA, as well
as for querying the semantic aspect of multimedia content, such as the RDF-
based RAL, those algebras are neither adequate nor complete with regard to the
EMMO model, which addresses the media, semantic, and the functional aspects
of multimedia content, as well as versioning support.

As a consequence, we were forced to develop a dedicated query algebra to
obtain a sound foundation for querying EMMOs. At least for the design of this
algebra, we were able to gain valuable insights from the approaches we examined
to incorporate certain aspects of their design.

5 EMMA Query Algebra

The design of the EMMO query algebra EMMA was in the first place driven by
the requirement for accessing the complete information stored within an EMMO,
i.e. the access to the three aspects of an EMMO, as well as its versioning informa-
tion. To enable query optimization, the query algebra’s operators are of limited
complexity and orthogonal. Through the combination and nesting of modular
operators, complex queries can be formulated.

There are five general classes of EMMA’s query operators: the extraction op-
erators provide the basis for querying an EMMO’s three aspects, as well as its
versioning information. The navigational operators enable the navigation along
an EMMO’s semantic graph structure and provide means for the integration of
ontological knowledge. The selection predicates facilitate the selection of only

50 S. Zillner and W. Winiwarter

those entities satisfying a specific condition, and the constructors enable the
modification, combination, and creation of new EMMOs. Finally, the join oper-
ator relates several entities or EMMOs with a join condition.

Before we present the formal basis of the five operator classes in the follow-
ing subsections, we will provide some definitions required for the understanding
of the definitions to follow. To guarantee the readability of the paper, we will
introduce the most representative EMMA operators by giving their formal defini-
tions accompanied with illustrative real-world example queries originating from
the CULTOS project. We will omit any EMMA operator which is used for ac-
cessing only some very specific aspects and information captured by the EMMO
model. The complete list of formal definitions of EMMA operators can be found
in [52].

To conclude this section, we will explain in a summary subsection how these
operators contribute to fulfil the requirements for an EMMO query algebra.

5.1 Basic Definitions

The input and output values of EMMA operators, i.e. their signatures, are de-
scribed by sets and sequences.

Definition 10. [Set and Sequence] Let IN denote the set of all natural numbers,
I an arbitrary index set, BOO = {true, false} the Boolean set, and SET the set
of all sets. Let A and B be arbitrary sets, then P(A) = {x |x ⊆ A} denotes the
powerset of A and A×B := {(x, y) |x ∈ A ∧ y ∈ B} the Cartesian product over
A and B. The elements of a Cartesian product are called sequences or tuples.
SEQ denotes the set of all sequences. A sequence of length 1 is equal to its single
entry element, i.e. ∀x (x) = x. Let j ∈ I then πj :

∏
i∈I Ai −→ Aj with

πj(a1, a2, . . . , an) = aj denotes the jth projection of
∏

i∈I Ai.

EMMA operators are either functions or predicates.

Definition 11. [Function and Predicate] Let A, B ∈ SET and f ∈ FUN with
f : A −→B be a function, then D(f) = A denotes the domain and R(f) = B
the range of function f , FUN A the set of all functions with D(f) = A, and
FUN [A,B] the set of all functions with D(f) = A and R(f) = B. Furthermore,
p ∈ FUN [A,BOO] denotes a predicate, PRE A = FUN [A,BOO] the set of all predi-
cates with domain A, and PRE = {PRE A |A ∈ SET } the set of all predicates.
Let f ∈ FUN ∏

i∈I Ai
,j∈I, x∈Aj and (a1, . . . , aj−1, aj+1, . . . , an) ∈

∏
i∈I\{j} Ai,

then the function f[a1,...,aj−1,$,aj+1,...,an] : Aj −→ SET with
f[a1, ... ,aj−1,$,aj+1,...,an](x) = f(a1, . . . , aj−1, x, aj+1, . . . , an) is called f -projection
onto Aj.

EMMA operators are designed to be modular and simple. By using modular
EMMA operators in combination with the operators Apply and Elements, more
complex EMMA operators can be defined, and complex queries can be formu-
lated. The operator Apply takes a function and a set as input values and returns
the set consisting of all return values of the specified function being applied to
each element in the specified set.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 51

Definition 12. [Apply] Let A ∈ SET and f ∈ FUN , then the operator
Apply : FUN × SET −→ SET is defined as Apply(f, A) = {f(x) |x ∈ A∩D(f)}.

The operator Elements is used to flatten data returned by other operations,
e.g. for the specified input set it returns all elements being contained in at least
one element of the specified set.

Definition 13. [Elements] Let A ∈ SET , then the operator
Elements : SET −→ SET is defined as Elements(A) = {x | ∃X ∈ A ∧ x ∈ X}.

Additionally, for enabling the combination and nesting of EMMA operators,
their signatures are always specified in the most general way, i.e. their input and
output values are specified as set of entities. Thus, operators which only return
valid results if applied to specific kinds of entities can still be applied to other
kinds of entities yielding an empty result.

5.2 Extraction Operators

The extraction operators render it possible to access the information stored
within an EMMO. In the following, we define a representative subset of the
extraction operators for the three different aspects, as well as for the versioning
information.

Media Aspect. Logical media parts model media objects at a logical level
and maintain connections to their physical representations, i.e. to their media
profiles and media selectors. For accessing the information described by a logical
media part’s connectors, EMMA defines several modular operators, as well as
some more complex operators defined by nesting those modular operators. For
example, the operator MediaProfiles can be used for locating media profiles, i.e.
applying the operator MediaProfiles to a logical media part returns the union of
all its associated media profiles, e.g. (see Fig. 1) the query expression

MediaProfiles(lsalem) = {(www.../Salem183.avi, {(“duration”, 183), (“format”, “AVI”)}),
(www.../Salem112.avi, {(“duration”, 112), (“format”, “AVI”)})}

gives a set of two media profiles, each of them consisting of a URI locating
the media data and a metadata set describing the low-level characteristics of
the media data. The operator MediaProfiles is defined as a combination of the
operators connectors and MediaProfile. For a specified entity, the operator con-
nectors returns its set of connectors, and the operator MediaProfile returns the
media profile for a given connector. By using the operators Apply and Elements
in its definition, the operator MediaProfiles can be used to access the union of
associated media profiles of a logical media part.

Definition 14. [connectors and MediaProfiles] Let w ∈ Ω , ms ∈ MS, and
mp ∈ MP , then the operator connectors : Ω −→ P(MS ×MP) is defined as
connectors(w) = Cw, the operator MediaProfile : MS × MP −→ MP as
MediaProfile(ms, mp) = mp, and MediaProfiles : Ω −→ P(MP) as
MediaProfiles(w) = Elements(Apply(MediaProfile, connectors(w))).

52 S. Zillner and W. Winiwarter

Semantic Aspect. By attaching concepts of an ontology to entities, entities
get meaning. The operator types accesses an entity’s set of classifying ontology
objects. For example, applying the operator types to the logical media part
“Nosferatu” yields the set containing the ontology object “Movie” (see Fig. 1):

types(lnosferatu) = {omovie}.

Definition 15. [types] Let w ∈ Ω , then the operator types : Ω −→ P(Θ) is
defined as types(w) = Tw.

For retrieving the attributes of an entity, the operator attributes can be
used. Requesting, for example, all attribute-value pairs of the logical media part
“Nosferatu”, i.e.

attributes(lnosferatu) = {(odirector, “Murnau”)},

yields the set including only one attribute-value pair, i.e. the ontology object
“Director” with the string value “Murnau”. The operator attributes returns the
set of associated attribute-value pairs for a given entity.

Definition 16. [attributes] Let w ∈ Ω , then the operator
attributes : Ω −→ P(Θ × VAL) is defined as attributes(w) = Aw.

EMMOs encapsulate a graph-like knowledge structure of entities. The alge-
bra provides the operator asso for accessing all associations representing binary
directed semantic relationships between other entities, e.g. the query expression

asso(eresearch) = {amo→moV 3, amoV 3→st,

ami→(mo→moV 3), ami→(moV 3→st)}

returns the associations within EMMO “Dracula Research” (Fig. 5).

Definition 17. [asso] Let w ∈ Ω , then the operator asso : Ω −→ P(Λ) is
defined as asso(w) = {x |x ∈ Nw ∩ Λ}.

As associations are modeled as entities, they belong to an EMMO’s set of
nodes. The algebra provides the operator nodes for accessing all entities con-
tained within an EMMO, e.g. the query expression

nodes(eresearch) = {emovies, emoviesV3, estudies, omiller, amo→moV 3,

amoV 3→st, ami→(mo→moV 3), ami→(moV 3→st)}

yields a set consisting of all entities in EMMO “Dracula Research”.

Definition 18. [nodes] Let w ∈ Ω , then the operator nodes : Ω −→ P(Ω) is
defined as nodes(w) = Nw.

As EMMOs are also entities, EMMOs can be nested hierarchically. The oper-
ator AllEncEnt can be used for accessing all encapsulated ent ities of an EMMO,

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 53

Hooper

Director

Dracula Movies V3

inspire inspire

similar audience

retell

Salem’s Lot
Movie

The Cabinet of
Dr. Caligari

http://../Caligari.mpeg

format…

Movie

Wiene

Director

Nosferatu

http://../Nosferatu.mpeg

format....

Movie

Murnau

Director

A Return to
Salem’s Lot

http://../ReturnSalem.avi

format...

Movie
Cohen

Director

Dracula

http://../dracula.pdf

filesize……

Novel

Stoker

Author

http://.../Salem183.avi

duration: 183min
format: AVI
.....

full

....

....

........

http://.../Salem112.avi

....duration …

Work-in-Progress

Fig. 6. EMMO “Dracula Movies V3”(emoviesV 3)

i.e. it computes all entities recursively contained within an EMMO. For example,
the query expression

AllEncEnt(eresearch) = nodes(eresearch) ∪ nodes(emovies) ∪ nodes(emoviesV3)
∪nodes(estudies) =

= {emovies, emoviesV3, estudies, omiller, amo→moV 3, amoV 3→st,

ami→(mo→moV 3), ami→(moV 3→st), lcaligari, lnosferatu,

lsalem, aca→no, ano→sa, ldracula, lreturn,

adr→no, asa→re, lvampire, ava→dr}

unifies the nodes of EMMO “Dracula Research” with the nodes of the EMMOs
“Dracula Movies” (Fig. 1), “Dracula Movies V3” (see Fig. 6), and “Dracula
Studies” (Fig. 4), because these EMMOs are contained within EMMO “Dracula
Research” and contain no further EMMOs themselves.

The operator AllEncEnt is defined by means of induction over the natural
numbers IN and is based on the operator EncEnt. We say

– “entity w1 is contained in EMMO w0 at first level”, if w1 belongs to EMMO
w0’s nodes,

– “entity wn+1 is contained in EMMO w0 at n+1th-level”, if there exists a
sequence of n EMMOs, i.e. w1, . . . , wn, such that for all k ∈ {1, . . . , n + 1}
entity wk belongs to EMMO wk−1’s nodes,

54 S. Zillner and W. Winiwarter

– “w is recursively contained or encapsulated in EMMO w0”, if there exists a
natural number n, such that w is contained in EMMO w0 at nth-level.

To provide a basis for the combination with other EMMA operators, the
operators AllEncEnt and EncEnt both take entities as input value, but only
return a reasonable result, if the input entity is of kind EMMO. In all other
cases, the empty set is returned. In this way, the operator EncEnt takes an
EMMO e and a natural number n as input, and returns the nodes of EMMO
e at nth level. By defining a unification over the operator EncEnt, the operator
AllEncEnt returns, for a specified EMMO, the set of all its recursively contained
entities.

Definition 19. [AllEncEnt] Let e ∈ Ω , then the operator
EncEnt : Ω × IN −→ P(Ω) is defined inductively over IN as follows:
EncEnt(e, 1) = Ne, and by assuming EncEnt(e, n) is defined, one defines
EncEnt(e, n+1) = {x ∈ Ω | ∃y ∈ EncEnt(e, n) ∩ Σ ∧ x ∈Ny}. The operator
AllEncEnt : Ω −→ P(Ω) is defined as AllEncEnt(e) =

⋃
i≥1 EncEnt(e, i).

Functional Aspect. EMMOs offer functions for dealing with their content.
For the execution of an EMMO’s functionality, the query algebra EMMA spec-
ifies the operator Execute. Applying the operator Execute to EMMO “Dracula
Movies” (Fig. 1), the ontology object “rendering”, and the parameter HTML, i.e.

Execute(emovies, orender, HTML) = frender(emovies, HTML) = DraculaMovies.html,

returns an HTML-document representing the content of EMMO “Dracula
Movies”, for example, an HTML-document of a table with the rows being the
EMMO’s associations as illustrated in the left part of Fig. 7.

Applying the operator Execute to the same EMMO and the same ontology
object, but with the parameter SMIL, i.e.

Execute(emovies, orender, SMIL) = frender(emovies, SMIL) = DraculaMovies.smil,

yields a SMIL-document about the EMMO’s content, for example, a SMIL-
document sequentially representing the EMMO’s associations as illustrated in
the right part of Fig. 7.

The operator Execute takes an EMMO, a function, and a sequence of pa-
rameters as input values and returns the result value of the execution of the
function with the specified EMMO and sequence of parameters as input values.
If the operator Execute is applied to an entity which is not of kind EMMO, or
the specified operation does not belong to the operations of the specified EMMO,
or the sequence of parameters constitutes no valid input value for the specified
operation, the empty set is returned.

Definition 20. [Execute] Let e ∈ Ω , op ∈ OP , and s ∈ SEQ , then the operator
Execute : Ω ×OP × SEQ −→ SET is defined as

Execute(e, op, s) =
{

π2(op)(e, s) if op ∈ Oe ∧ (e, s) ∈ D(π2(op))
∅ else

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 55

<html>
<body>
<h1>EMMO Dracula Movies</h1>
<table border="1">
<tr><th>Source</th>
<th>Association</th>
<th>Target</th></tr>
<tr><td>
The ..Caligari</td>
<td>Inspire</td>
<td>Nosferatu</td></tr>
<tr><td>Nosferatu</td>
<td>Inspire</td>
<td>Salem's Lot

Salem's Lot
</td></tr>
</table>
</body>
</html>

<smil>
<head><layout>
<root-layout height="200" width="620"/>
<region id="l" left="0"/>
</layout></head>
<body> <seq>
<par end="60s" >
<video src="./Caligari.mpeg" type="video/mpeg" region="l"/>
<text src="./inspire.txt" type="text/plain" region="m"/>
<video src="./Nosfertatu.mpeg" type="video/mpeg" region="r"/>
</par>
<par end="60s" >
<video src="./Nosferatu.mpeg" type="video/mpeg" region="l"/>
<text src="./inspire.txt" type="text/plain" region="m"/>
<video src="./Salem183.avi" type="video/mpeg" region="r"/>
</par>
</seq></body>
</smil>

Fig. 7. DraculaMovies.html and DraculaMovies.smil

Versioning. Each entity describes a set of succeeding and a set of preceding
versions. The operator successors can be used for accessing all direct successors
of an entity, e.g. the query expression

successors(emovies) = {emoviesV 1, emoviesV 2}

returns EMMO “Dracula Movies V1” and “Dracula Movies V2”, the two direct
successor versions of EMMO “Dracula Movies” (see Fig. 3). For accessing all
succeeding versions, the operator AllSuccessors is applied, e.g.

AllSuccessors(emovies) = {emoviesV 1, emoviesV 2, emoviesV 3}.

The operator successors retrieves all direct successors of the specified entity.

Definition 21. [successors] Let w ∈ Ω , then the operator
successors : Ω −→ P(Ω) is defined as successors(w) = Sw.

The operator AllSuccessors is defined by means of induction over the natural
numbers IN and returns the set of all successors for a specified entity. The
operator’s definition is based on the operator successors serving as initial step
of the induction and on the operator Successors which returns the set of all nth-
successors for a specified entity and natural number n. An entity w′ is called nth

successor of entity w, if there exists a sequence of n-1 entities, with each entity
in the sequence representing the direct successor of its subsequent entity.

Definition 22. [AllSuccessors] Let w ∈ Ω , then the operator
Successors : Ω × IN −→ P(Ω) is defined by induction over IN as follows:
Successors(w, 1) = successors(w), and by assuming Successors(w, n) is de-
fined, one defines Successors(w, n + 1) = {x ∈ Ω | ∃y ∈ Successors(w, n) ∧
x ∈ successors(y)}, and the operator AllSuccessors : Ω −→ P(Ω) as
AllSuccessors(w) =

⋃
i≥1 Successors(w, i).

For the access to an entity’s preceding versions, EMMA also provides the
operators predecessors, Predecessors , and AllPredecessors, which are defined
analogously.

56 S. Zillner and W. Winiwarter

5.3 Navigational Operators

An EMMO establishes a graph-like knowledge structure of entities with asso-
ciations being labeled by ontology objects describing the edges in the graph
structure. The navigational operators provide means for traversing the semantic
graph structure of an EMMO. Navigation through an EMMO’s graph structure is
controlled by a navigation path defined as a set of sequences of ontology objects.
A mapping for each ontology object in the sequence to the corresponding asso-
ciation of an EMMO defines the traversal path of the graph structure. We have
defined regular path expressions over ontology objects for describing the syntax
of a navigation path. The basic building blocks of regular path expressions are
ontology objects which can be modified and combined using conventional regular
expression operators.

Definition 23. [Regular path expression] Given a symbol set
S = {ε, , +, ∗, ?, |, –, (,)}, an alphabet Ψ = Θ ∪ S, and Ψ∗, the set of words
over Ψ (finite strings over elements of Ψ). Then, we define REG ⊆ Ψ∗ as the
smallest set with the following properties:

(1) ∀o ∈ Θ : o ∈ REG , (6) ∀r ∈ REG : r? ∈ REG ,
(2) ε ∈ REG , (7) ∀r ∈ REG : r+ ∈ REG ,
(3) ∈ REG , (8) ∀r ∈ REG : r∗ ∈ REG ,
(4) ∀r1, r2 ∈ REG : r1 |r2 ∈ REG , (9) ∀o ∈ Θ : o– ∈ REG ,
(5) ∀r1, r2 ∈ REG : r1r2 ∈ REG , (10) ∀r ∈ REG : (r) = r,

and denote REG as the set of regular path expressions over ontology objects.

Navigational operators take a regular path expression as input and spec-
ify how this syntactic expression is applied to navigate the graph structure.
For example, for a given EMMO, starting entity, and regular path expression,
the navigational operator JumpRight returns the set of all entities that can be
reached by traversing the navigation path in the right direction, i.e. by following
associations from source to target entities. Applying the operator JumpRight
to EMMO “Dracula Movies V3”(see Fig. 6), the starting entity “The Cabinet
of Dr. Caligari”, and the regular path expression consisting of only one single
ontology object “oinspire” yields the logical media part representing the movie
“Nosferatu”:

JumpRight(emoviesV3, lcaligari, oinspire) = {lnosferatu}.
As already mentioned, the basic building blocks of regular path expressions are
ontology objects, which can be modified and combined using conventional regu-
lar expression operators. For example, adding the operator “∗” to a regular path
expression specifies an iteration of path expressions, which is interpreted as nav-
igation along the same regular path expression any number of times. Applying
the operator JumpRight to the same EMMO and starting entity as in the above
query, as well as the regular path expression “oinspire∗” returns three logical me-
dia parts representing the movies “The Cabinet of Dr. Caligari”, “Nosferatu”,
and “Salem’s Lot”:

JumpRight(emoviesV3, lcaligari, oinspire∗) = {lcaligari, lnosferatu, lsalem}.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 57

Regular path expressions can also be concatenated or defined as optional. For
example, applying the operator JumpRight to EMMO “Dracula Movies V3”, the
starting entity “Nosferatu”, and the regular path expression “oinspireosimilar?”,
yields the logical media parts “Salem’s Lot” and “A Return to Salem’s Lot”:

JumpRight(emoviesV3, lnosferatu, oinspireosimilar?) = {lsalem, lreturn}.

The choice operator “|” can be used to combine regular path expressions as
alternate versions, e.g.

JumpRight(emoviesV3, lnosferatu, oinspire |oretell) = {lsalem}.

By adding the operator “−” to a regular path expression, the inversion of the reg-
ular path expression, i.e. the change of direction of navigation, can be expressed,
e.g.

JumpRight(emoviesV3, lnosferatu, oretell−) = {ldracula}.

Traversal along the opposite direction of associations can also be expressed with
the navigational operator JumpLeft, e.g.

JumpLeft(emoviesV3, lnosferatu, oretell) = JumpRight(emoviesV3, lnosferatu, oretell−).

Navigational operators provide the basis for the integration of ontological knowl-
edge into queries. For example, the transitivity of association types, such as
the transitivity of associations of type “inspire”, can be reflected by replac-
ing the navigation path oinspire with the navigation path oinspire∗ (see exam-
ple above). Knowledge about inverse association types, such as the association
types “retell” and “is-retold”, can be integrated within the queries as well, for
instance, by replacing the navigation path ois−retold with the navigation path
ois−retold |oretell−, e.g.

JumpRight(emoviesV3, lnosferatu, ois−retold |oretell−) = {ldracula}.

The operator JumpRight, which is formally defined below, takes two entities
and one regular path expression as input values. The first input entity – which
has to be of type EMMO for the operator JumpRight to return a non-empty
result value – determines the navigation space, the second entity specifies the
starting point of navigation, and the regular path expression describes the set
of all possible navigation paths.

Definition 24. [JumpRight] For e, w ∈ Ω , and a regular path expression r ∈
REG , the operator JumpRight : Ω × Ω ×REG −→ P(Ω) is defined as follows:

58 S. Zillner and W. Winiwarter

(1) ∀r ∈ Θ : JumpRight(e, w, r) = {x ∈ Ne | ∃y y∈asso(e)∧
∧ r∈types(y) ∧ w = sy ∧ x = ty}

(2) r = ε : JumpRight(e, w, ε) = {w |w ∈ Ne}
(3) r = : JumpRight(e, w,) = {x ∈ Ne | ∃y ∈ asso(e)∧

∧w = sy ∧ x = ty}
(4) ∀r1, r2 ∈ REG : JumpRight(e, w, r1 |r2) =

⋃
x∈{r1,r2} JumpRight(e, w, x)

(5) ∀r1, r2 ∈ REG : JumpRight(e, w, r1r2) =
=

⋃
x∈JumpRight(e,w,r1) JumpRight(e, x, r2)

(6) ∀r ∈ REG : JumpRight(e, w, r?) =
⋃

x∈{r,ε} JumpRight(e, w, x)
(7) ∀r ∈ REG : JumpRight(e, w, r+) =

⋃
n≥1 JRn(e, w, r) with

JRn(e, w, r)defined by induction over IN :
JR1(e, w, r) = JumpRight(e, w, r)
JRn(e, w, r) =

⋃
x∈JRn−1(e,w,r) JumpRight(e, x, r)

(8) ∀r ∈ REG : JumpRight(e, w, r∗) =
⋃

x∈{r+,ε} JumpRight(e, w, x)
(9) ∀o ∈ Θ : JumpRight(e, w, o–) = {x ∈ Ne | ∃y y∈asso(e)∧

∧ o∈types(y) ∧ x = sy ∧w = ty}.
The navigational operator JumpLeft is defined analogously.

5.4 Selection Predicates

The selection predicates allow the selection of only those entities that satisfy a
specific condition. They basically use the result values of extraction operators
to create Boolean operators. For instance, applying the operator IsType to the
logical media part “Dracula” (Fig. 6) and the set containing one ontology object
“Book” returns false:

IsType(ldracula, {obook}) = false.

By taking a set of ontology objects as second input parameter, the operator
IsType enables the integration of supertype/subtype relationships within queries.
The ontological knowledge about a subtype relationship, e.g. the subtype rela-
tionship between the ontology objects “Novel” and “Book”, can be reflected
within the query expression, e.g.

IsType(ldracula, {obook, onovel}) = true.

Assuming that ontological knowledge about supertype/subtype relationships is
also represented within EMMOs (e.g. in an EMMO eontology), e.g. by means of
associations of type “is a”, the subtypes of “Book” in the previous query could
also be calculated dynamically during query execution by using an appropriate
JumpLeft expression:

IsType(ldracula, JumpLeft(eontology, obook, ois a∗)) = true.

Although we have not yet developed a language which governs the expression
of such ontological knowledge within the EMMO model, the query algebra is
sufficiently expressive to be ready for exploiting this knowledge once it becomes
available.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 59

Definition 25. [IsType] Let w ∈ Ω , and O ⊆ Ω , then the operator
IsType : Ω × P(Ω) −→ BOO is defined as

IsType(w, O) =
{

true if ∃o∈O o∈types(w)
false else

The selection predicates can be combined with the generic Select operator,
which takes a predicate and an arbitrary set as input values, and returns all
elements of the set that satisfy the condition of the specified predicate. For
instance, if we apply the Select operator to the selection predicate IsType with
the set consisting of the ontology objects “Book”and “Novel” as fixed parameter
value and to the set of all logical media parts contained within EMMO “Dracula
Studies” (see Fig. 4), the result set consists of the logical media part representing
Stoker’s novel “Dracula”:

Select(IsType[$,{obook,onovel}], lmp(estudies)) = {ldracula}.

Definition 26. [Select] Let A ∈ SET and p ∈ PRE , then let the operator
Select : PRE × SET −→ SET be Select(p, A) = {x |x ∈ A ∩ D(p) ∧ p(x)}.

Being based on the return values of extraction operators, the list of selection
predicates has the same length as the list of extraction operators. Any infor-
mation which can be accessed by the extraction operators is again used for the
selection of entities. Thus, for example, selection predicates allow the selection
of all logical media parts within EMMO “Dracula Movies”(see Fig. 1) associated
with a media profile describing media data in AVI format, i.e.

Select(HasMediaProfileValue[$,“format”,Equal[$,“AVI”]]
, lmp(emovies)) = {lsalem}

yields the logical media part “Salem’s Lot” specified by two media profiles which
both contain the attribute “format” with value “AVI” in their sets of metadata.

The operator HasMediaProfileV alue takes three input parameters, i.e. an
entity w, a string value s, and a predicate p, and returns true, if the entity w
contains a media profile with a set of metadata including a name-value pair, with
the name being equal to s and the value satisfying the condition described by
the specified predicate p, e.g. in the above example the predicate Equal returns
true if its two specified parameters are equal, otherwise false.

Definition 27. [HasMediaProfileValue] Let w ∈ Ω , s ∈ STR , and p ∈ PRE ,
then HasMediaProfileV alue : Ω × STR × PRE −→ BOO is defined as

HasMediaProfileV alue(w, s, p) =

⎧⎪⎪⎨
⎪⎪⎩

true if ∃c ∈ Cw

∃k∈Metadata(MediaProfile(c))
(π1(k) = s ∧ p(π2(k)))

false else

5.5 Constructors

EMMA specifies five constructors for EMMOs, i.e. the operators Difference,
Union, Intersection, Nest, and Flatten. All the constructors take at least one

60 S. Zillner and W. Winiwarter

Newcomers

A Return to
Salem’s Lot

Dracula Nosferatu

Salem’s Lot

retell

similar audience

Fig. 8. EMMO “Newcomers”(enewcomers)

EMMO and possibly other parameters as input values, and return exactly one
EMMO as output value. The Difference operator takes two EMMOs and a string
value. It creates a new EMMO which is denoted by the specified string value.
The new EMMO’s nodes encompass all entities belonging to the first, but not
to the second EMMO, and additionally, the source and target entities of each
association contained within the first EMMO.

Applying the Difference operator to the successor EMMO “Dracula Movies
V3”(Fig. 6) and the original EMMO “Dracula Movies”(Fig. 1), generates a new
EMMO “Newcomers” (see Fig. 8) consisting of the logical media parts describing
the movies “Nosferatu”, “Salem’s Lot”, and “A Return to Salem‘s Lot”, and the
novel “Dracula”, as well as two connecting associations, i.e.

Difference(emoviesV3, emovies, “Newcomers”) = enewcomers

with nodes(enewcomers) = {ldracula, adr→no, lnosferatu, lsalem, asa→re, lreturn}.

Definition 28. [Difference] Let e1, e2 ∈ Σ and s ∈ STR then the operator
Difference : Σ × Σ × STR −→ Σ is defined as
Difference(e1, e2, s) = (oes , “s”, “emm”, ε, ε, ∅, ∅, ∅, Nes, ∅, ∅, ∅, ∅) with oes ∈ UUID

and Nes = nodes(e1)\nodes(e2) ∪ {x | ∃y∈asso(e1)\asso(e2) x = ty ∨ x = sy}.

The operators Union and Intersection are defined in a similar way, the op-
erator Nest extracts the information stored within a set of associations from
an EMMO, i.e. triples consisting of source entity, association, and target entity,
into a new EMMO knowledge structure, and the operator Flatten generates a
flattened EMMO, i.e. all recursively contained higher level entities are added as
first level entities to the nodes of the EMMO. Due to space restriction, we omit
the formal definitions.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 61

RenderingImplementation

Rendering

Zoa‘s Research

opposed
representation

B. Zoa

believes

Bible Text
Studies

cultural concept

New Testament

The Fall of
Adam & Eve

http://.../Adam.txt

format: txt
..... full

The Fall

http://.../fall.doc

format: doc
..... full

Ribner

Author

Text

reference

Metamorphoses

ekphrasis

Studies
about the Fall

format: jpg
..... full

Icarus’ Fall

http://.../IcarusFall.jpg

Painter

The Fall

http://.../fall.doc

format: doc
..... full

Ribner

Author

http://.../metam.pdf

format: pdf
..... full

Author

Ovid

Text

Painting

Text

Text

Breugel

Fig. 9. EMMO “Zoa’s Research”(ezoa)

5.6 Join Operator

The Join operator renders it possible to extend queries across multiple EMMOs.
It specifies how to relate n sets of entities, possibly originating from different
EMMOS, within a query. The join operator takes n entity sets, n operators, and
one predicate as input values. We compute the Cartesian product of the n entity
sets and select only those tuples that satisfy the predicate after applying the n
operators to the n entities. The result set of tuples is projected onto the first
entry. For example, asking for all entities within EMMO “Zoa’s Research” (see
Fig. 9) which contain within their nodes the logical media part “Icarus’ Fall”
corresponds to the query expression

Join(nodes(ezoa), {licarus},nodes, id,⊇) = {estudiesfall}

and yields EMMO “Studies about the Fall”, because this EMMO includes the
logical media part “Icarus’ Fall”.

Definition 29. [Join] Let i ∈ I = {1, . . . n}, n ∈ IN, Wi ⊆ Ω , fi ∈ FUN and
p ∈ PRE , then the operator Join :

∏
i∈I P(Ω)×

∏
i∈I FUN ×PRE −→ SET is

defined as Join(W1, . . . , Wn, f1, . . . , fn, p) = {π1(w1, . . . , wn) | ∀i∈I
(wi ∈ Wi ∧ fi ∈ FUN Wi ∧ p ∈ PRE ∏

i∈I R(fi) ∧ p(f1(w1), . . . , fn(wn)))}.

62 S. Zillner and W. Winiwarter

The Join operator is a generalization of the Select operator accounting for
constraints defined on not only one but several entity sets. Defining the identity
function id, i.e. id(x) = x, any select operation can be expressed by a join
expression taking only one set, one operator, and one predicate p as input values,
e.g.

Join(nodes(estudies), id, p) = Select(p,nodes(estudies)).

5.7 Summary of EMMA Operators

EMMA provides operators to access the three aspects and the versioning in-
formation. The access to an EMMO’s media aspect is realized by the operator
connectors returning all connectors of a logical media part and the operator Me-
diaProfiles returning all media profiles of a logical media part. For accessing the
semantic aspect, EMMA provides the operator types accessing the types of an
entity, the operator attributes returning an entity’s attribute values, the operator
asso retrieving all associations within an EMMO, the operator nodes yielding all
entities within an EMMO, the operator AllEncEnt attaining all recursively con-
tained entities within an EMMO, and the operators JumpRight and JumpLeft
enabling the navigation of an EMMO’s graph structure. The operator Execute
addresses the functional aspect, and the operators successors (predecessors) and
AllSuccessors (AllPredecessors) ensure the access to the versioning information.

The ability to arbitrarily nest and combine operators guarantees the high
orthogonality of EMMA’s operators. The basic Select operator takes a selection
predicate and an arbitrary set – possibly the return set of another EMMA oper-
ation. The operator Apply allows one to use a specified operator not only for a
single input value, but for a set of input values. As some of the operator’s output
values are represented in a format which cannot be directly used as input value
for other operators, EMMA provides operators to transform and prepare the
data for the use by other operators: the operator Elements allows the flattening
of data sets and the Nest operator facilitates the nesting of an arbitrary set of
associations into an EMMO knowledge container.

By extending queries across multiple EMMOs and entities, the join opera-
tor allows one to correlate the information contained in different EMMOs. The
construction operators establish primitive operators for the construction and
manipulation of EMMOs.

Finally, EMMA allows one to capture ontological knowledge within a query.
Within the EMMO model, ontological knowledge is represented by ontology ob-
jects. The operator types accesses the classification of an entity (represented by a
set of ontology objects), and the operator IsType selects entities of specific types.
As the operators JumpRight and JumpLeft allow the specification of navigation
along associations by means of powerful regular path expressions, they enable
the inclusion of ontological knowledge such as transitive and inverse association
types, and supertype/subtype relationships.

By fulfilling all the requirements described in Sect. 3, EMMA can be said to
be adequate and complete with regard to the EMMO model.

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 63

6 Implementation

For enabling content sharing and collaborative authoring of EMMOs, the im-
plementation had to be realized on a distributed infrastructure. Thus, we have
established EMMO containers constituting a management component for EM-
MOs, i.e. the space where EMMOs “live”. The EMMO containers are not in-
tended as a centralized infrastructure realized by one single Root EMMO con-
tainer running at one server. Instead we establish a decentralized infrastructure
with EMMO containers of different scale and sizes running at different, dis-
tributed servers. To realize a decentralized EMMO management infrastructure
two requirements need to be fulfilled:

– The users of EMMO containers are manifold, i.e. ranging from individual
users running a home PC to multimedia content publishers. In other words,
the systems running the EMMO containers are very heterogeneous servers
with different sizes, operating systems, capabilities, and requirements. There-
fore, the implementation of the EMMO container infrastructure needed to
be platform independent and scalable. We have implemented the EMMO
containers in Java and used the object-oriented DBMS ObjectStore for their
persistent storage. By using Java we achieved platform independency and
by using ObjectStore for the persistent storage of EMMOs the scalability
of EMMO containers could be realized, i.e. besides a full-fledged database
server implementation suitable for larger content providers, ObjectStore also
provides a code-compatible file-based in-process variant PSEPro that better
suits the limited capabilities and needs of home users.

– For enabling the sharing and collaborative authoring of multimedia con-
tent, EMMOs must be transferable between the different EMMO containers.
Therefore, export and import facilities for EMMO containers, reflecting an
EMMO’s content, i.e. its three aspects and versioning information, are re-
quired. As EMMOs can describe quite complex structures, it is important
for the users to specify the parts of the EMMO they want to export. They
can choose between four export options indicating whether the EMMO is
transferred with or without media objects, with or without versioning in-
formation, with or without encapsulated entities, and with or without the
attached operations. EMMO containers export their EMMOs to a bundle
structure, i.e. a ZIP archive that captures an EMMO’s three aspects and
versioning information, and indicates the specified export option.

We have implemented the EMMA query processing architecture with query
optimization in mind, however, the realization of a query optimizer is subject
of future work. The EMMA query processing architecture, which is depicted in
Fig. 10, is based on the implementation of the EMMO container infrastructure
described above. Its focus is the extraction and navigation of information stored
within the EMMO containers. The EMMA query processing architecture takes
syntactically well-defined query expressions as input. The processing of the query
expressions reflects the definition of the EMMA query operators and produces
a set of EMMO objects in a pre-defined output format.

64 S. Zillner and W. Winiwarter

EMMA query

model

Optimized EMMA

query model

EMMA

query

Query

result

EMMA parser Query optimizer

Query execution engine

[validation]

Fig. 10. The EMMA query processing architecture

For the implementation of the EMMA operators, we have chosen a func-
tional approach, i.e. each operator has a corresponding function that evaluates
according to its implementation-specific algorithm. For enabling consistency and
integrity checking, each function has a signature that defines the number and
types of input arguments, and, additionally, the types of the expected output
values. By typing all EMMO and EMMA model constructs according to an in-
ternal hierarchy, those constructs can be used for specifying the signature of
functions.

For realizing complex queries, i.e. the nesting of modular EMMA operators,
the EMMA query model is built up. The EMMA query model is a tree consisting
of nodes and leaves. Nodes represent algebraic operators, and leaves correspond
to EMMO and EMMA model constructs, i.e. values of the underlying EMMO
container. The EMMA query model is supplied with a built-in validation mech-
anism, ensuring that operators in the query tree contain only valid references
to subsequent nodes, i.e. before evaluating the complex structure of the query
model tree, a consistency and integrity check concerning the signature of the
functions implementing the EMMA operators is performed.

By applying a bottom-up evaluation technique, the execution computes the
final query result. This evaluation technique runs through several steps. First,
any EMMO or EMMA model construct captured by the EMMO containers that
represents a valid input value for the query expression is fetched. Then, all pos-
sible output values – represented as tuples – that can be derived when applying
the function’s algorithm reflecting the definition of the corresponding EMMA
operator of the fetched input values, are computed. Going up the tree hierarchy,
this process is repeated by applying functions to the set of objects in the EMMO

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 65

store together with those tuples which were inferred in the previous step. This
process is repeated until the root of the query tree is reached and the final result
set is delivered.

Query optimization is realized by the EMMA query optimizer, which takes a
query model and transforms it into an equivalent model that can evaluate more
efficiently. The design of the transformation algorithm is based on the evaluation
of the response time of query expressions and is subject of future work.

7 Conclusion

In this paper, we have introduced the formal basis of the query algebra EMMA,
which enables the efficient retrieval of the knowledge represented by EMMOs,
a novel approach to semantic multimedia meta modeling. EMMA’s operators
provide the access to all information and aspects stored within EMMOs and
are based on precise semantics, thus offering a formal basis for query rewriting
and optimization. EMMA features orthogonal, arbitrarily combinable operators
that range from simple selection and extraction operators to more complex nav-
igational operators, joins, and even rudimentary operators for the construction
and manipulation of EMMOs. Moreover, EMMA renders it possible to integrate
ontological knowledge within queries, such as supertype/subtype relationships,
transitive or inverse association types. We have briefly sketched the implemen-
tation of the EMMO container infrastructure and the EMMA query processing
architecture.

In our future work, we will focus on the realization of an eLearning scenario
by means of the EMMO infrastructure. Based on real-world data gathered from
this use case, we will carry out experiments for performance evaluation, in partic-
ular to achieve a detailed analysis and understanding of the effects of the various
factors on query performance. We will use the application-specific data as start-
ing point for the development of an EMMA query optimizer. Furthermore, we
are in the process of developing an ontology engineering environment, consist-
ing of an ontology description language compatible with the EMMO model, and
tools that enable the seamless integration of ontological knowledge into query
processing.

References

[1] Raggett, D., Hors, A.L., Jacobs, I.: HTML 4.01 Specification. W3C Recommen-
dation, World Wide Web Consortium (W3C) (1999)

[2] Ayars, J., et al.: Synchronized Multimedia Integration Language (SMIL 2.0).
W3C Recommendation, World Wide Web Consortium (W3C) (2001)

[3] Ferraiolo, J., Jun, F., Jackson, D.: Scalable Vector Graphics (SVG) 1.1. W3C
Recommendation, World Wide Web Consortium (W3C) (2003)

[4] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

66 S. Zillner and W. Winiwarter

[5] Cruz, I., Sayenko, O.: Semantically Driven Multimedia Querying and Presenta-
tion. In Srinivasan, U., Nepal, S., eds.: Managing Multimedia Semantics. IDEA
Group Publishing, Hershey PA, USA (2005)

[6] Hunter, J.: Enhancing the Semantic Interoperability of Multimedia Through a
Core Ontology. IEEE Transaction on Circuits and Systems for Video Technology
13 (2003)

[7] van Ossenbruggen, J., Nack, F., Hardman, L.: That Obscure Object of Desire:
Multimedia Metadata on the Web (Part I). IEEE MultiMedia 11 (2004)

[8] Nack, F., van Ossenbruggen, J., Hardman, L.: That Obscure Object of Desire:
Multimedia Metadata on the Web (Part II). IEEE MultiMedia 12 (2005)

[9] Nack, F., Hardman, L.: Towards a Syntax for Multimedia Semantics. CWI Report
INS-RO204, Centrum voor Wiskunde en Informatica (2002)

[10] Hammiche, S., et al.: Semantic Retrieval of Multimedia Data. In: Proc. of the
Second ACM International Workshop on Multimedia Databases, Washington, DC,
USA (2004)

[11] Srinivasan, U., Nepall, S., eds.: Managing Multimedia Semantics. IDEA Group
Publishing, Hershey PA, USA (2005)

[12] Schellner, K., Westermann, U., Zillner, S., Klas, W.: CULTOS: Towards a World-
Wide Digital Collection of Exchangeable Units of Multimedia Content for Inter-
textual Studies. In: Proc. of the Conference on Distributed Multimedia Systems
(DMS 2003), Miami, Florida (2003)

[13] Newman, D., Patterson, A., Schmitz, P.: XHTML+SMIL Profile. W3C Note,
World Wide Web Consortium (W3C) (2002)

[14] ISO/IEC JTC 1/SC 34/WG 3: Information Technology – Hypermedia/Time-
Based Structuring Language (HyTime). International Standard 15938-5:2001,
ISO/IEC (1997)

[15] ISO/IEC IS 13522-5: Information Technology – Coding of Hypermedia Infor-
mation – Part 5: Support for Base-Level Interactive Applications. International
Standard, ISO/IEC (1996)

[16] Pereira, F., Ebrahimi, T., eds.: The MPEG-4 Book. Pearson Education, California
(2002)

[17] Beckett, D.: Resource Description Framework (RDF) Model and Syntax Specifi-
cation. W3C Recommendation, World Wide Web Consortium (W3C) (2004)

[18] Brickely, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Working Draft, World Wide Web Consortium (W3C) (2004)

[19] ISO/IEC JTC 1/SC 34/WG 3: Information Technology – SGML Applications –
Topic Maps. ISO/IEC International Standard 13250:2000, International Organi-
zation for Standardization/International Electrotechnical Commission (ISO/IEC)
(2000)

[20] ISO/IEC JTC 1/SC 29/WG 11: Information Technology – Multimedia Content
Description Interface – Part 5: Multimedia Description Schemes. Final Draft
International Standard 15938-5:2001, ISO/IEC (2001)

[21] ISO/JTC 1/SC 32/WG 2: Conceptual Graphs. ISO/IEC International Stan-
dard, International Organization for Standardization/International Electrotech-
nical Commission (ISO/IEC) (2001)

[22] Westermann, U., Zillner, S., Schellner, K., Klas, W.: EMMOs: Tradeable Units
of Knowledge Enriched Multimedia Content. In Srinivasan, U., Nepal, S., eds.:
Managing Multimedia Semantics. IDEA Group Publishing, Hershey PA, USA
(2005)

EMMA – A Formal Basis for Querying Enhanced Multimedia Meta Objects 67

[23] Zillner, S., Westermann, U., Winiwarter, W.: EMMA – Towards a Query Algebra
for Enhanced Multimedia Meta Objects. In: Proc. of the Fourth International
Conference on Computer and Information Technology (CIT 2004), Wuhan, China
(2004)

[24] Zillner, S., Westermann, U., Winiwarter, W.: EMMA – A Query Algebra for
Enhanced Multimedia Meta Objects. In: Proc. of the Third International Confer-
ence on Ontologies, Databases and Applications of SEmantics (ODBASE 2004),
Larnaca, Cyprus (2004)

[25] Billiani, F., et al.: Demonstrator of Intertextual Cultural Threads – Standard
Ontology-Extended Ontology. Public Deliverable Version 2.0, CULTOS Consor-
tium and Project Planning (2003)

[26] Benari, M., et al.: Proposal for a Standard Ontology of Intertextuality. Public
Deliverable Version 2.0, CULTOS Consortium and Project Planning (2003)

[27] Leach, P.: UUIDs and GUIDs. Network Working Group Internet-Draft, The
Internet Engineering Task Force (IETF) (1998)

[28] Zillner, S., Winiwarter, W.: Ontology-Based Query Refinement for Multimedia
Meta Objects. In: Proc. of the Sixth International Conference on Information
Integration and Web Based Applications & Services (iiWAS 2004), Jakarta, In-
donesia (2004)

[29] Zillner, S., Winiwarter, W.: Integrating Ontology Knowledge into a Query Algebra
for Multimedia Meta Objects. In: Proc. of the Fifth International Conference on
Web Information Systems Engineering (WISE 2004), Brisbane, Australia (2004)

[30] Zillner, S., Winiwarter, W.: Integration of Ontological Knowledge within the
Authoring and Retrieval of Multimedia Meta Objects. International Journal of
Web and Grid Services (IJWGS) 1 (2005)

[31] Cattell, R., ed.: The Object Database Standard: ODMG-93. Morgan, Kaufmann,
San Francisco, CA (1994)

[32] Leung, T., et al.: The Aqua Data Model and Algebra. In: Proceedings of the
Fourth International Workshop on Database Programming Languages – Object
Models and Languages, Manhattan, New York City (1993)

[33] Kifer, M., Kim, W., Sagiv, Y.: Querying Object-Oriented Databases. In: Proc. of
the ACM SIGMOD Conference on Management of Data, San Diego, CA (1992)

[34] Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object Exchange Across
Heterogeneous Information Sources. In: Proc. of the Eleventh International Con-
ference on Data Engineering, Taipei (1995)

[35] Abiteboul, S., et al.: The Lorel Query Language for Semistructured Data. Inter-
national Journal on Digital Libraries 1 (1997) 68–88

[36] Bruneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. The VLDB Journal –
The International Journal on Very Large Data Bases 9 (2000)

[37] Beeri, C., Tzaban, Y.: SAL: An Algebra for Semistructured Data and XML. In:
Proc. of the Second International Workshop on the Web and Databases (WebDB
99), Philadelphia, Pennsylvania, USA (1999)

[38] Boag, S., et al.: XQuery 1.0: An XML Query Language. W3C Working Draft,
World Wide Web Consortium (W3C) (2005)

[39] Berglund, A., et al.: XML Path Language (XPath). W3C Working Draft Version
2.0, World Wide Web Consortium (W3C) (2005)

[40] Lee, T., et al.: Querying Multimedia Presentations Based on Content. IEEE
Transactions on Knowledge and Data Engineering 11 (1999)

68 S. Zillner and W. Winiwarter

[41] Duda, A., Weiss, R., Gifford, D.: Content Based Access to Algebraic Video. In:
Proc. of the IEEE First International Conference on Multimedia Computing and
Systems, Boston, MA, USA (1994)

[42] Adali, S., Sapino, M., Subrahmanian, V.: A Multimedia Presentation Algebra. In:
Proc. of the ACM SIGMOD International Conference on Management of Data,
Philadelphia, Pennsylvania, USA (1999)

[43] Karvounarakis, G., et al.: RQL: A Functional Query Language for RDF. In Gray,
P.M.D., et al., eds.: The Functional Approach to Data Management. Springer,
Heidelberg, Germany (2003)

[44] Miller, L., Seaborn, A., Reggiori, A.: Three Implementations of SquishQL, a
Simple RDF Query Language. In: Proc. of the First International Semantic Web
Conference (ISWC2002), Sardinia, Italy (2002)

[45] Frasincar, F., et al.: RAL: An Algebra for Querying RDF. In: Proc. of the Third
International Conference on Web Information Systems Engineering (WISE 2000),
Singapore (2002)

[46] ISO/IEC JTC1 SC34 WG3: New Work Item Proposal, Topic Map Query Lan-
guage (TMQL). New Proposal, International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC) (2000)

[47] Garshol, L.: Tolog 0.1. Ontopia Technical Report, Ontopia (2003)
[48] Bogachev, D.: TMPath – Revisited. Online Article, available un-

der http://homepage.mac.com/dmitryv/TopicMaps/TMPath/TMPath Revis-
ited.html (2004)

[49] Barta, R., Gylta, J.: XTM::Path – Topic Map Management, XPath
Like Retrieval and Construction Facility. Online Article, available under
http://cpan.uwinnipeg.ca/htdocs/XTM/XTM/Path.html (2002)

[50] Widhalm, R., Mück, T.: Topic Maps (in German). Springer, Berlin Heidelberg,
Germany (2002)

[51] Manjunath, B., Salembier, P., Sikora, T., eds.: Introduction to MPEG-7. John
Wiley & Sons, West Sussex, UK (2002)

[52] Zillner, S.: A Query Algebra for Ontology-enhanced Management of Multimedia
Meta Objects. PhD thesis, Vienna University of Technology (2005)

Comparing and Transforming Between Data Models Via
an Intermediate Hypergraph Data Model

Michael Boyd1 and Peter McBrien2

1 PSA Parts Ltd, London SW19 3UA
mb@psaparts.co.uk

2 Dept. of Computing, Imperial College, London SW7 2AZ
pjm@doc.ic.ac.uk

Abstract. Data integration is frequently performed between heterogeneous data
sources, requiring that not only a schema, but also the data modelling language in
which that schema is represented must be transformed between one data source
and another.

This paper describes an extension to the hypergraph data model (HDM), used
in the AutoMed data integration approach, that allows constraint constructs found
in static data modelling languages to be represented by a small set of primitive
constraint operators in the HDM. In addition, a set of five equivalence preserv-
ing transformation rules are defined that operate over this extended HDM. These
transformation rules are shown to allow a bidirectional mapping to be defined
between equivalent relational, ER, UML and ORM schemas.

The approach we propose provides a precise framework in which to compare
data modelling languages, and precisely identifies what semantics of a particular
domain one data model may express that another data model may not express.
The approach also forms the platform for further work in automating the pro-
cess of transforming between different data modelling languages. The use of the
both-as-view approach to data integration means that a bidirectional association
is produced between schemas in the data modelling language. Hence a further ad-
vantage of the approach is that composition of data mappings may be performed
such that mapping two schemas to one common schema will produce a bidirec-
tional mapping between the original two data sources.

Keywords: conceptual data modelling, mappings, transformations, multiple rep-
resentations.

1 Introduction

The AutoMed data integration system [8,24] distinguishes itself as being an approach
which has a clear methodology for handling a wide range of static data modelling lan-
guages in the integration process [28], as opposed to the other approaches that assume
integration is always performed in a single common data model. This is achieved by
allowing a user to relate the modelling constructs of a higher level modelling language
such as ER, relational, UML, or ORM, to the constructs in a single lower level common
data modelling language called the hypergraph data model (HDM) [39], i.e. using the
terminology of model management [5] we perform a ModelGen to convert schemas in

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 69–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 M. Boyd and P. McBrien

ModelGen � ModelGen ModelGen�� �

Mapping��

Shdm

id→
��

�

�

A

�

E

B

�

Shdm

�
�

�

�

A

�

E

B

�

Sorm

E

A

B
��

�� ��

Srel

E(A,B)
E.A → E.B

Suml

E

A
B

Ser

E
A
B

Fig. 1. Conceptual modelling languages represented in the HDM

the higher level modelling languages into the HDM. Figure 1 illustrates this concept
being applied to four schemas which might appear to be equivalent.

In [28] a general approach was proposed showing how the data aspects of higher
level modelling languages were modelled as nodes and edges in the HDM, with the con-
straints of the higher level modelling language being represented by writing constraint
formulae over the HDM. For example, the ER schema in Figure 1 has an entity labelled
E that we represent by a node E in the HDM schema (represented by a black outlined
circle), and the attributes A and B of E are also represented as nodes in the HDM, to-
gether with edges (the thick black lines) associating them to the node representing E.
The fact that each entity instance has only one associated attribute instance in each of
A and B is represented by constraint rules in the HDM (the dash grey boxes, introduced
in [9] and extended in this paper), as is the fact that A is a key attribute of E. Using
the rules for ModelGen presented in Section 2, we will see that the ER, relational and
ORM schemas in Figure 1 all produce the same HDM schema, and the UML schema
produces an HDM schema with one difference in the constraints. In Section 3 we will
describe equivalence preserving rules for the HDM that can be used to map between
equivalent HDM schemas: this example is a case where the two HDM schemas shown
are not equivalent, and hence the rules do not permit us to ‘lose’ the extra

id→ constraint.
The concept of using graphs as an underlying representation for higher level mod-

elling languages has been used in modelling relational schemas [51], and for OO and
ER schemas [49], and we argue is an intuitive assumption to make. It also reduces
all schemas to an irreducible form [19], and in the context of relational databases has
recently been identified as a sixth normal form [13,12].

This paper extends the approach of [28] to represent the high level modelling lan-
guage constraints using a set of primitive constraint operators on the HDM. This paper
also shows how we may relate the ER, relational, UML and ORM higher level mod-

Comparing and Transforming Between Data Models Via an Intermediate HDM 71

elling languages — perform intermodel transformations — by the application of five
types of equivalence rules on the HDM and its primitive constraint operators. This work
is a considerable enhancement of our earlier work presented in [9] in that:

1. We give a formal definition of the constraint operators in an extension of the HDM
definition found in [39], and have added an additional constraint operator.

2. We give a set of mapping rules to exactly define how the higher level modelling lan-
guages are converted into these new constraint operators, and in addition we now
review how ORM is modelled using the constraints. We also consider more ad-
vanced modelling language features, such as generalisation hierarchies, look-here
and look-across cardinality constraints, candidate keys, and n-ary relationships.

3. We define how both-as-view (BAV) [30] data integration rules can be generated,
and use the properties of these BAV rules to demonstrate when we have equivalent
higher level schemas, and when there is information loss in the mapping process.

Our approach differs from other work in the area (reviewed in Section 5) in that
we use hypergraphs as the common data modelling language combined with producing
BAV transformations that exactly define the nature of the relationship (equivalence or
non-equivalence) between schemas on a construct by construct basis. Our approach
forms a framework, where the constraints we propose in the HDM, and the equivalence
preserving transformations, can be extended to handle new modelling languages. Thus
we provide a platform for the conversion between any data modelling language, with
the limitation that our current work assumes that the data model must have set-based
semantics. We also leave for future work the consideration of types in the data models:
we make the crude assumption for our current work that the data types match in the
data models being compared. This paper demonstrates the approach being applied by
converting between the major construct types of ER, relational, UML class and ORM
modelling languages, and hence has wide applicability in data modelling.

In addition to providing a mechanism for comparing the expressiveness of mod-
elling languages, the proposed primitive constraints and set of equivalence rules also
forms the basis for a method of automating the translation between modelling lan-
guages, based on descriptions of their constructs. This would involve further develop-
ment of an algorithm that would determine which equivalence rules need to be applied
to the HDM schema of one higher level schema to form a valid HDM schema of another
higher level schema.

The remainder of this paper is structured as follows. Section 2 reviews how to de-
scribe higher level data modelling languages by relating them to the HDM schema. The
HDM language is extended with a set of constraint operators that form a language used
to model the constraints in higher level data modelling languages. Section 3 details how
we approach the transformation between schemas in different modelling languages by
applying equivalence rules to the HDM schemas, thereby relating basic constructs of
the higher level modelling languages with each other. Section 4 considers how some ex-
tended operators of these languages are related. Section 5 discusses some related work,
and we give a summary and discuss future work in Section 6.

72 M. Boyd and P. McBrien

2 Describing a Data Modelling Language

We now review the HDM (first defined in [39]), giving slightly modified definitions
that reflect the syntax used in later work on the HDM and the AutoMed implementa-
tion. Then we present an example universe of discourse (UoD), and use it to illustrate
in general how the HDM may be used to represent ER, relational, UML and ORM
schemas. To keep the initial discussion reasonably concise, we leave some advanced
higher level modelling features until Section 4.

We define first the notion of a HDM schema, which is the structure in which data
may be held.

Definition 1 HDM Schema
Given a set of Names that we may use for modelling the real world, an HDM schema,
S, is a triple 〈Nodes, Edges, Cons〉 where:

– Nodes ⊆ {〈〈nn〉〉 | nn ∈ Names}
i.e. Nodes is a set of nodes in the graph, each denoted by its name enclosed in
double chevron marks.

– Schemes = Nodes ∪Edges
– Edges ⊆ {〈〈ne, s1, . . . , sn〉〉 |

ne ∈ Names∪{ }∧s1 ∈ Schemes∧. . .∧sn ∈ Schemes}
i.e. Edges is a set of edges in the graph where each edge is denoted by its name,
together with the list of nodes/edges that the edge connects, enclosed in double
chevron marks.

– Cons ⊆ {c(s1, . . . , sn) | c ∈ Funcs ∧ s1 ∈ Schemes ∧ . . . ∧ sn ∈ Schemes}
i.e. Cons is a set of boolean-valued functions (i.e. constraints) whose variables
are members of Schemes and where the set of functions Funcs forms the HDM
constraint language. �

The first three items in Definition 1 define a labelled, directed, nested hypergraph
(a hyperedge is an edge that connects more than two nodes in a graph, and these edges
are nested in the sense that hyperedges can themselves participate in hyperedges). The
last item in Definition 1 will be refined into the constraint language which is one of
the contributions of this paper. We list in Example 1 the contents of an example HDM
schema that we shall later, in Figure 3, show to be equivalent to an ER schema. Note
how the names of edges are sometimes given as the character ‘ ’ representing an un-
named edge, and also note that one of the edges is a nested edge, connecting the node
〈〈result:grade〉〉 to another edge 〈〈result,student,course〉〉.

Example 1 An HDM schema
Nodes = {〈〈ug〉〉, 〈〈ug:ppt〉〉, 〈〈student〉〉, 〈〈student:name〉〉, 〈〈student:sid〉〉,

〈〈result:grade〉〉, 〈〈course〉〉, 〈〈course:code〉〉, 〈〈course:dept〉〉}
Edges = {〈〈 ,ug,ug:ppt〉〉, 〈〈 ,student,student:sid〉〉, 〈〈 ,student,student:name〉〉,

〈〈result,student,course〉〉, 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉,
〈〈 ,course,course:dept〉〉, 〈〈 ,course,course:code〉〉} �

Comparing and Transforming Between Data Models Via an Intermediate HDM 73

The fourth component of the HDM schema definition states any extra constraints
that all instances of the schema must satisfy. Note that the definition of constraints in
[39] makes no restrictions on what the constraint language is. This papers proposes
a restricted constraint language, which we show is able to represent constraints in
higher level modelling languages, and forms a basis for writing transformations be-
tween schemas in those higher level modelling languages. Before defining these con-
straints we give in Definition 2 a definition of an instance of a schema, simplified from
the definition in [39].

Definition 2 HDM instance
Given an HDM schema S, an instance I of S is a structure for which there exists a
function ExtS,I : Schemes → P (Seq(V als)) where V als is the set of values we wish
to model as being in the domain of our data model, Seq gives any sequence of those
values, and P forms the power set of those sequences. We also have the restriction that:

1. each tuple 〈a1, . . . , an〉 ∈ ExtS,I(〈〈ne, s1, . . . , sn〉〉), ai ∈ ExtS,I(si) for all 1 ≤
i ≤ n;

2. for every c ∈ Cons, the expression c(v1/ExtS,I(v1), . . . , vn/ExtS,I(vn)) evaluates
to true, where v1, . . . , vn are the variables of c.

We call ExtS,I(s) the extent of scheme s ∈ Schemes. �

Note that item (1) of Definition 2 enforces that the extent of an edge is drawn from
values present in the extents of nodes and other edges it connects. Note that no restric-
tion is put on the extent of nodes: this would form the basis of typing in the HDM,
where a type T ⊆ P (Seq(V als)) is associated to each s ∈ Schemes such that for all I
ExtS,I(s) ⊆ T . Also note that the semantics of the schema are set based, and hence we
at present can only use the HDM to accurately model data modelling languages with
set based semantics. Dealing with typing of data, and bag or list based semantics will
be the subject of our future work.

The combination of HDM schema and instance, together with an extension mapping
function Ext forms what we will term an HDM data source in Definition 3.

Definition 3 HDM data source
A data source is a triple 〈S, I, ExtS,I〉 where S is a schema, I is an instance of S and
ExtS,I is an extension mapping from S to I . �

We now introduce to the HDM a set of six primitive constraints that we are propos-
ing as a practical solution to model the constraints of the higher level modelling lan-
guage in an analogous manner to how the nodes and edges of the HDM models the data
aspects of higher level modelling language. The set of six constraint operators might
need to be extended in the future to handle a wider range of high level modelling lan-
guage constructs, but we will demonstrate in this paper that our six constraints can deal
with a wide range of modelling concepts used in practice.

In the following descriptions, any variable beginning with s denotes a member of
Schemes. For each definition we give both a functional form (e.g. inclusion(s1, s2),
useful for some of our mapping rules that talk in general about a constraint op(. . .))

74 M. Boyd and P. McBrien

and an equivalent infix form (e.g. s1 ⊆ s2, which is used in the diagrams and in most
of the descriptions). When using these definitions later, we assume that where a tuple
of schemes 〈s1, . . . , sm〉 is used in a constraint definition, then s1 may be used as the
singleton tuple 〈s1〉. For example, we can write s1 � s as a shorthand for 〈s1〉 � s.
Several of the constraint definitions use a project function defined in Definition 4 that
provides a method of producing a kind of view of an HDM edge restricted to contain a
subset of the nodes or edges that the edge connects.

Definition 4 HDM project
The HDM project function π(〈sx, . . . , sy〉, s, t), which takes a tuple of schemes
〈sx, . . . , sy〉 that must appear in edge s, together with a tuple t that appears in the
extent of s, returns the values in tuple t that corresponds to the schemes 〈sx, . . . , sy〉:

π(〈sx, . . . , sy〉, 〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉,
〈a1, . . . , ax, . . . , ay, . . . , an〉) = 〈ax, . . . , ay〉

If the tuple t is omitted, a set of values is obtained:
ExtS,I(π(〈sx, . . . , sy〉, 〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉)) = {〈sx, . . . , sy〉 |

〈s1, . . . , sx, . . . , sy, . . . , sn〉 ∈ ExtS,I(〈〈ne, s1, . . . , sx, . . . , sy, . . . , sn〉〉)} �

Definition 5 HDM Constraints
The minimum HDM constraint language should comprise of Funcs={inclusion,
exclusion,union,mandatory,unique,reflexive}, where the six functions have the follow-
ing semantics:

1. inclusion(s1, s2) ≡ s1 ⊆ s2

States that the extent of s1 is always a subset of the extent of s2, i.e. for all I ,
ExtS,I(s1)− ExtS,I(s2) = ∅

2. exclusion(s1, . . . , sn) ≡ s1 �∩ . . . �∩ sn

for all 1 ≤ x < y ≤ n, and for all I , ExtS,I(sx) ∩ ExtS,I(sy) = ∅
3. union(s, s1, . . . , sn) ≡ s = s1 ∪ . . . ∪ sn

for all I , ExtS,I(s) = ExtS,I(s1) ∪ . . . ∪ExtS,I(sn)
4. mandatory(〈s1, . . . , sm〉, s) ≡ 〈s1, . . . , sm〉� s

States that every combination of the values in extents of s1, . . . , sm must appear at
least once in the extent of edge s that connects them, i.e. for all I
{〈a1, . . . , am〉 | a1 ∈ ExtS,I(s1) ∧ . . . ∧ am ∈ ExtS,I(sm)}

− {〈π(s1, s, t), . . . , π(sm, s, t)〉 | t ∈ ExtS,I(s)} = ∅
5. unique(〈s1, . . . , sm〉, s) ≡ 〈s1, . . . , sm〉� s

States that every combination of the values in extents of s1, . . . , sm must appear at
most once in the extent of edge s that connects them, i.e. for all I
{t | t ∈ ExtS,I(s) ∧ t′ ∈ ExtS,I(s) ∧ t �= t′ ∧

π(s1, s, t) = π(s1, s, t
′) ∧ . . . ∧ π(sm, s, t) = π(sm, s, t′)} = ∅

6. reflexive(s1, s) ≡ s1
id→ s

If an instance of scheme s1 appears in edge s, then one of the instances of s must
be an identity tuple, i.e. for all I:
{π(s1, s, t) | t ∈ ExtS,I(s)} −

{π(s1, s, t) | t ∈ ExtS,I(s) ∧ t = 〈π(s1, s, t), π(s1, s, t)〉} = ∅ �

Comparing and Transforming Between Data Models Via an Intermediate HDM 75

Example 2 may be combined with Example 1 to give a complete HDM as repre-
sented diagrammatically in Figure 3(b). The constraint language might appear too fine
grain, but we will show in Section 3 that when writing inter model transformations it
is useful to be able to test for, to add or to delete constraints expressed at this level
of detail. Also, the six constraint operators defined here are not meant to be definitive:
handling other modeling language constructs in addition to those presented later in this
section might require us to introduce additional constraint primitives.

Example 2 Constraints in an HDM schema
Cons = {〈〈ug〉〉 � 〈〈 ,ug,ug:ppt〉〉, 〈〈ug〉〉 � 〈〈 ,ug,ug:ppt〉〉,

〈〈ug:ppt〉〉 � 〈〈 ,ug,ug:ppt〉〉, 〈〈ug〉〉 ⊆ 〈〈student〉〉,
〈〈student〉〉 � 〈〈 ,student,student:sid〉〉, 〈〈student〉〉 � 〈〈 ,student,student:sid〉〉,
〈〈student:sid〉〉 � 〈〈 ,student,student:sid〉〉, 〈〈student〉〉 � 〈〈 ,student,student:name〉〉,
〈〈student〉〉 � 〈〈 ,student,student:name〉〉, 〈〈student〉〉 id→ 〈〈 ,student,student:name〉〉,
〈〈student:name〉〉 � 〈〈 ,student,student:name〉〉,
〈〈result:grade〉〉 � 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉,
〈〈result,student,course〉〉 � 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉,
〈〈course〉〉 � 〈〈 ,course,course:dept〉〉, 〈〈course〉〉 � 〈〈 ,course,course:dept〉〉,
〈〈course:dept〉〉 � 〈〈 ,course,course:dept〉〉, 〈〈course〉〉 � 〈〈 ,course,course:code〉〉,
〈〈course〉〉 � 〈〈 ,course,course:code〉〉, 〈〈course〉〉 id→ 〈〈 ,course,course:code〉〉,
〈〈course:code〉〉 � 〈〈 ,course,course:code〉〉} �

Most of these constraint operators have been used before in the context of de-
scribing single modelling languages. In particular, mandatory and unique constraints
(though more limited in definition) have been used in a hypergraph model for relational
schemas in [51], and inclusion constraints appear in [42]. However the combination of
our mandatory, unique and reflexive constraints give a rich framework in which to ex-
press various notions of cardinality constraints and keys found in higher level modelling
languages.

To illustrate these constraints, consider from the HDM schema in Example 1 the
nodes 〈〈student〉〉 and 〈〈student:name〉〉 connected by edge 〈〈 ,student,student:
name〉〉. As will be discussed in depth later, this might be used to model an ER en-
tity called student with an attribute name. Suppose we have five data sources with the
same schema S but different instances I1, I2, I3, I4, I5 for which:

x ∈ 1, 2, 3, 4 : ExtS,Ix(〈〈student〉〉) = {1, 2}
ExtS,I5(〈〈student〉〉) = {‘Peter’, ‘Mike’}
x ∈ 1, 2, 3, 4, 5 : ExtS,Ix(〈〈student:name〉〉) = {‘Peter’, ‘Mike’}
ExtS,I1(〈〈 ,student,student:name〉〉) = {〈1, ‘Peter’〉, 〈1, ‘Mike’〉, 〈2, ‘Mike’〉}
ExtS,I2(〈〈 ,student,student:name〉〉) = {〈2, ‘Peter’〉, 〈2, ‘Mike’〉}
ExtS,I3(〈〈 ,student,student:name〉〉) = {〈1, ‘Mike’〉, 〈2, ‘Mike’〉}
ExtS,I4(〈〈 ,student,student:name〉〉) = {〈1, ‘Peter’〉, 〈2, ‘Mike’〉}
ExtS,I5(〈〈 ,student,student:name〉〉) = {〈‘Peter’, ‘Peter’〉, 〈‘Mike’, ‘Mike’〉}
To state that every instance of 〈〈student〉〉 must appear in the edge (and hence that

I2 is invalid), we use the mandatory constraint:
〈〈student〉〉 � 〈〈 ,student,student:name〉〉

76 M. Boyd and P. McBrien

For the ER model, this constraint would be used when the attribute is mandatory for
the entity (i.e. to state that each student must have a name). To state that every instance
of 〈〈student〉〉 must appear no more than once in the edge (and hence that I1 is invalid),
we use the unique constraint:

〈〈student〉〉 � 〈〈 ,student,student:name〉〉
For the ER model, this constraint would be used when the attribute is not multi-

valued for the entity (i.e. to state that each student has no more than one name). The
two above constraints together model that each instance of 〈〈student〉〉 must appear
exactly once in the edge, and hence for the ER model a mandatory and single valued
attribute (i.e. to state that each student has exactly one name).

We will illustrate as we consider different higher level modelling languages how
these general notions of cardinality may be used to represent optional and mandatory
attributes, and also both look-here and look-across [45,21] cardinality constraints on
relationships/associations. The term look-across is used to denote the use of cardinal-
ity constraints where the cardinality written against entity xi in an n-ary relationship
between entities x1, . . . , xn restricts the participation of the other n − 1 entities in the
relationship. The term look-here is used to denote cardinality constraints that restrict
the participation of xi in the relationship.

Here, let us consider the general notion of a key, and how it is represented using
our HDM constraints. If we want to model that 〈〈student:name〉〉 is a candidate key
for 〈〈student〉〉 — that is to say that each value in 〈〈student:name〉〉 is in a one-to-one
correspondence with a value in 〈〈student〉〉 (and thus that only I4 and I5 are valid out
of the five instances above) — we must in addition make 〈〈student:name〉〉 also be 1:1
in the edge:

〈〈student:name〉〉� 〈〈 ,student,student:name〉〉
〈〈student:name〉〉� 〈〈 ,student,student:name〉〉
Thus in the ER case, name would be unique to each student. If we want to model that

〈〈student:name〉〉 is the primary key for 〈〈student〉〉 — that is to say that the values in
〈〈student:name〉〉 equal those in 〈〈student〉〉 (thus only I5 is valid) — we must make
〈〈student〉〉 be reflexive in the edge:

〈〈student〉〉 id→ 〈〈 ,student,student:name〉〉
In general, reflexive, mandatory and unique together enforce that the entity has the

same values as the attribute, and thus that the extent of the entity is the key values of
the entity. This is because mandatory and unique at both ends of an edge enforce a one-
to-one mapping, and the reflexive constraint means that this one-to-one mapping is an
identity function. By contrast, lack of the reflexive constraint would be used when the
entity has as its extent a set of object identifiers.

Note that we could have alternatively put the reflexive constraint on the other node
as:

〈〈student:name〉〉 id→ 〈〈 ,student,student:name〉〉
Also note that the unique constraint on the opposite end of the edge to the reflex-

ive constraint is redundant, since it is implied by the other constraints. Hence we draw
the equivalences shown in Figure 2(a) that will be used during intermodel transforma-
tion, where one higher level modelling language might happen to place constraints in a
different but equivalent manner to another higher level modelling language.

Comparing and Transforming Between Data Models Via an Intermediate HDM 77

A B
E

id→
� � �

≡ A B
E

id→
� �

id→
� �

≡ A B
E

�
id→

� �

(a) Transposing a reflexive constraint across an edge

A

Bm

...

B1
E1

Em

id→ �

�

�

�

�

≡ A

Bm

...

B1
E1

Em

id→
� �

�

(b) Mandatory-unique constraints in joins

Fig. 2. Fundamental equivalences on HDM constraints

Compound keys will require that we have a definition of an edge natural join given
in Definition 6. This will be used to say that the reflexive constraint applies to more that
one node. The introduction of the natural join means that we have a variation of the
equivalence in Figure 2(a) given in Figure 2(b) that applies across an edge natural join.

Definition 6 Natural join between HDM edges
A view over HDM edges may be formed by joining edges together to form a new virtual
edge:

〈〈E, A, B1, . . . , Bn〉〉 � 〈〈E, A, C1, . . . , Cm〉〉 = 〈〈E, A, B1, . . . , Bn, C1, . . . , Cm〉〉
The extent of the virtual edge is defined by a natural join over the extent of the two

joined edges:
ExtS,I(〈〈E, A, B1, . . . , Bn, C1, . . . , Cm〉〉) = {〈x, y1, . . . , yn, z1, . . . , zm〉

| 〈x, y1, . . . , yn〉 ∈ ExtS,I(〈〈E, A, B1, . . . , Bn〉〉) ∧
〈x, z1, . . . , zm〉 ∈ ExtS,I(〈〈E, A, C1, . . . , Cm〉〉)} �

2.1 An Example UoD and Four Schemas

Figures 3(a), 4(a), 5(a) and 6(a) show four data models, in ER, relational, UML and
ORM data modelling languages. These are designed to cover the same UoD, and as will
be shown later, three of them have the same information capacity [32]. The schemas
represent a record of students, the courses that they sit, and the grades they obtain
for those courses. Some students are undergraduates, and each ug has an associated
personal programming tutor ppt that other students do not have. The use of underlin-
ing in the relational and ER schemas indicates what are key attributes, and a ques-
tion mark follows a nullable attribute in those schemas. In the relational schema, for-
eign keys are shown by using an implication between the foreign key columns and

78 M. Boyd and P. McBrien

the referenced table columns. In the ER schema this foreign key may either be repre-
sented by a relationship (for example the foreign keys result.name → student.name
and result.code → course.code are represented in the ER result relationship) or by a
subset (for example the foreign key ug.name → student.name is represented by a sub-
set between the student and ug entities).

To describe how we map between high level modelling languages and the HDM,
we use a simple production rule language as described in Definition 7.

Definition 7 HDM Production Rules
Higher level modelling language constructs are transformed into the HDM using pro-
duction rules of the form:
〈high level construct name〉 〈high level construct scheme〉 � 〈HDM scheme〉∗
〈condition〉1 ⇒ 〈HDM constraint〉1
...
〈condition〉n ⇒ 〈HDM constraint〉n

Where

– 〈high level construct scheme〉 is the structure used to represent a higher level
model construct of type 〈high level construct name〉,

– 〈HDM scheme〉 is the list of zero or more HDM nodes or edges used to repre-
sent those aspects 〈high level construct scheme〉 that have an extent. Zero such
schemes will be denoted using ⊥, and the last 〈HDM scheme〉 is used to return
the entire extent of the 〈high level construct scheme〉

– 〈condition〉 is a boolean expression over elements of of 〈high level construct
scheme〉, which when satisfied, causes 〈HDM constraint〉 to be added to the
〈HDM scheme〉s. �

2.2 Describing an ER Modelling Language in the HDM

When the HDM is used to model a higher level modelling language, each construct
in that language must be classified as being one of four types, each of which imply a
different representation in the HDM. We explain how this methodology (first presented
in [28]) is applied to an ER modelling language (which we describe here, see [45,35]
for surveys of variations of ER modelling languages), and illustrate our discussions by
showing how the methodology may take the ER schema of Figure 3(a) and produce
the HDM schema of Figure 3(b). Note that in the HDM diagrams, HDM nodes are
represented by white circles with thick outlines, and HDM edges are represented by
thick black lines. The HDM constraint language is represented by grey dashed boxes
connected by grey lines to the nodes and edges to which the constraint applies. Edges
pass through black circles in a straight line, hence any edge or constraint applying to an
edge meets that edge at a angle.

A summary of the AutoMed high level schemes that represent the high level ER
schema in textual format are listed in Table 1, along with the class each belongs to. A
similar table could be generated for the relational, UML and ORM models considered
in the following sections. The production rules presented in this sub-section map these
high level model schemes into the HDM schema already given in Examples 1 and 2.

Comparing and Transforming Between Data Models Via an Intermediate HDM 79

ugppt

�

student
name

sid
course

code

dept

grade?

result
0:N

0:N

(a) An ER schema of the student-course database

ug

ug:
ppt

�

�

�

student:
name

�

student

id→
� �

student:
sid

�

�

�

⊆

result:
grade

�

�

result

course:
code

�

course

id→
� �

course:
dept

�

�

�

(b) HDM representation of the ER schema

Fig. 3. An ER schema and its equivalent HDM schema

The methodology in [28] categorises the constructs of a higher level model as being
nodal, link-nodal, link, or constraint. We illustrate these categories by considering how
the constructs of an ER modelling language will be handled.

Nodal. A nodal construct is one that may appear in isolation in a schema, such as an
ER model entity. Using the AutoMed data integration system [8], such constructs are
defined by giving a prototype scheme that must contain the name of a HDM node used
to represent that construct. Hence we represent the ER entity student by the schema
〈〈student〉〉.

The production rule for an ER entity 〈〈E〉〉 is very simple, since it states that each
entity with scheme 〈〈E〉〉 maps to a single HDM node 〈〈E〉〉, and has no constraints:
entity 〈〈E〉〉 � 〈〈E〉〉

Link. A link construct is one that associates other constructs with each other, and
which has an extent which is drawn from those constructs, such as an ER relationship

80 M. Boyd and P. McBrien

Table 1. AutoMed high level model schemes for the ER example schema

class construct scheme
nodal entity 〈〈student〉〉
link-nodal attribute 〈〈student,name,notnull〉〉
constraint key 〈〈student,name〉〉
link-nodal attribute 〈〈student,sid,notnull〉〉
nodal entity 〈〈ug〉〉
link-nodal attribute 〈〈ug,ppt,notnull〉〉
constraint subset 〈〈student,ug〉〉

class construct scheme
nodal entity 〈〈course〉〉
link-nodal attribute 〈〈course,code,key〉〉
constraint key 〈〈course,code〉〉
link-nodal attribute 〈〈course,dept,notnull〉〉
link relationship 〈〈result,student,0:N,course,0:N〉〉
link-nodal attribute 〈〈result,grade,null〉〉

construct. In AutoMed, we represent ER relationships by the scheme comprising of the
name of the HDM edge used to represent the construct, together with pairs of the entity
names and cardinality constraints. For example, we represent the ER relationship result
in Figure 3(a) by the scheme 〈〈result, student, 0:N, course, 0:N〉〉. The production rule
uses auxiliary rules to generate the constraints in the HDM necessary to represent the
cardinality constraints in the ER schema. Assuming that our ER model uses look-here
semantics [45,21], we need one line for each entity Ex that generates as appropriate �

and � using a function generate card() defined in Definition 8.
relationship 〈〈R, E1, L1:U1, . . . , En, Ln:Un〉〉 � 〈〈R, E1, . . . , En〉〉

true ⇒ generate card(E1, 〈〈R, E1, . . . , En〉〉, L1, U1)
...

true ⇒ generate card(En, 〈〈R, E1, . . . , En〉〉, Ln, Un)

Definition 8 Generation of constraints representing cardinality
This function generates cardinality constraints between a set of nodes or edges
{NE1, . . . , NEn} ∈ Schemes and E ∈ Edges, where L may be either 0 or 1, and
U may be 1 or *.
generate card (〈NE1, . . . , NEn〉, E, L, U) � ⊥

L = 1 ⇒ 〈NE1, . . . , NEn〉� E
U = 1 ⇒ 〈NE1, . . . , NEn〉� E �

Note that the rule in Definition 8 takes as its first argument a tuple of nodes and
edges NE1, . . . , NEn that must appear in the edge E that is its second argument, and
then produces mandatory and unique constraints to determine how many times a partic-
ular combination of values from the extent of NE1, . . . , NEn may appear in the extent
of E.

Applying our production rule to the relationship 〈〈result, student, 0:N, course, 0:N〉〉
produces an edge 〈〈 , result, student〉〉 to represent its extent. The auxiliary constraint
rules will produce no constraints, since neither of the guards within the definition of
generate card will match L = 0 or U = *.

Link-Nodal. A link-nodal construct is one that has associated values, but may only
exist when associated with some other construct. They are represented in the HDM by
an edge associating a new node with some existing node or edge. For example, ER
attributes are link-nodal constructs, and the name attribute of the entity student is

Comparing and Transforming Between Data Models Via an Intermediate HDM 81

represented in AutoMed by the scheme 〈〈student, name, notnull〉〉. The production rule
for ER attributes creates a node and edge.

attribute 〈〈E, A, N〉〉 � 〈〈E:A〉〉, 〈〈 , E, E:A〉〉
true ⇒ generate card(〈〈E:A〉〉, 〈〈 , E, E:A〉〉, 1, *)

N = notnull ⇒ generate card(〈〈E〉〉, 〈〈 , E, E:A〉〉, 1, 1)
N = null ⇒ generate card(〈〈E〉〉, 〈〈 , E, E:A〉〉, 0, 1)

Thus the production rule when applied to the ER attribute 〈〈course,dept,notnull〉〉
produces the node 〈〈course:dept〉〉 and the edge 〈〈 ,course,course:dept〉〉 to represent the
extent of the attribute. The first auxiliary constraint rule produces 〈〈course:dept〉〉 �

〈〈 ,course,course:dept〉〉, the second produces 〈〈course〉〉� 〈〈 ,course,course:dept〉〉
and 〈〈course〉〉 � 〈〈 ,course,course:dept〉〉 (since both guards in the generate card
are met), and then the last rule fails to match in the guard.

Note that since the grade attribute is optional, we obtain just two constraints when
the production rule is used on 〈〈result,grade,null〉〉:

〈〈result:grade〉〉� 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉
〈〈result,student,course〉〉� 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉

Note that in our modelling of the ER model (and relational and UML languages),
the fact that attribute names are prefixed by the associated entity name reflects a deliber-
ate choice made when defining the construct. One could alternatively say that attribute
names are globally unique, which would change the HDM graph to have just one node
〈〈name〉〉 to represent both the 〈〈student, name, notnull〉〉 and 〈〈ug, name, notnull〉〉 re-
lational columns, but this would not give the correct semantics for a normal ER model.
The alternative global naming choice will be used in modelling the value types of ORM
models.

In Figure 3(b) it should be noted that the syntax is not ambiguous, but does need
careful reading. Each � or � always has a node or edge on its left hand side that appears
in the edge on its right hand side. We use this fact to ignore which ‘side’ we connect
� and � constraints to in the diagram. This makes the diagrams more tidy in appear-
ance. (Note that this is different from the approach we followed in our earlier work
[9]). Therefore the 〈〈course:dept〉〉 to 〈〈 ,course,course:dept〉〉 mandatory constraint
is drawn using � in the constraint box.

Constraint. A constraint construct is one that has no associated extent, but instead
limits the extent of the constructs it connects to. An example of a constraint construct
is the ER model subset relationship. For example, the subset between ug and student
is represented in AutoMed by the scheme 〈〈student, ug〉〉.
subset 〈〈E, Es〉〉 � ⊥

true ⇒ 〈〈Es〉〉 ⊆ 〈〈E〉〉
ER generalisations are another example of constraint constructs. For example, a

generalisation that specified the children entities 〈〈E1〉〉, . . . , 〈〈En〉〉 are disjoint subsets
of some parent entity 〈〈E〉〉 could be defined by the following rule:

82 M. Boyd and P. McBrien

generalisation 〈〈E, E1, . . . , En〉〉 � ⊥
true ⇒ 〈〈E1〉〉 ⊆ 〈〈E〉〉

⇒ ...
true ⇒ 〈〈En〉〉 ⊆ 〈〈E〉〉
true ⇒ 〈〈E1〉〉 �∩ . . . �∩ 〈〈En〉〉
Our example ER schema in Figure 3(a) contains no generalisations, but we will dis-

cuss and compare advanced modelling constructs of various data modelling languages
in Section 4.

The final constraint in our ER model is the definition of the key of an entity, which
serves to denote the set of its attributes that may be used to identify instances of the
attribute.

key 〈〈E, A1, . . . , An〉〉 � ⊥
true ⇒ 〈〈E〉〉 id→ 〈〈 , E, E:A1〉〉 � . . . � 〈〈 , E, E:An〉〉

The constraint limits the instances of the entity to be an identity with the join of
its key attributes (we will give an example of how this type of constraint works when
looking at the relational result table in the next section).

2.3 Describing Relational Schemas in the HDM

Having reviewed the general methodology for representing higher level modelling lan-
guages in the HDM in the previous subsection, we will now apply the methodology
to the relational schema. Relational model tables are nodal constructs, and hence we
represent the table student by the scheme 〈〈student〉〉, and the table result by 〈〈result〉〉.
The production rule for translating such schemes into the HDM is as follows.
table 〈〈T 〉〉 � 〈〈T 〉〉

Relational model columns are link-nodal constructs, and hence are modelled by a
scheme containing a HDM node that represents the construct it depends on, followed
by the name of the HDM node that represents the column, followed by the constraint on
whether the attribute may be null. For example, the name column of table student is
represented by the scheme 〈〈student, name, notnull〉〉. In the HDM, this becomes a node
〈〈student:name〉〉 to represent values of the column/attribute, and the nameless edge
〈〈 ,student,student:name〉〉 to represent the association of these values to table/entity
〈〈student〉〉.
column 〈〈T, C, N〉〉 � 〈〈T :C〉〉, 〈〈 , T, T :C〉〉

true ⇒ generate card(〈〈T :C〉〉, 〈〈 , T, T :C〉〉, 1, *)
N = notnull ⇒ generate card(〈〈T 〉〉, 〈〈 , T, T :C〉〉, 1, 1)
N = null ⇒ generate card(〈〈T 〉〉, 〈〈 , T, T :C〉〉, 0, 1)
The definition of relational columns and ER attributes are very similar, and as can

be seen by comparing Figures 4 and 3, produce similar results in the HDM.
The primary key construct of the relational model is a constraint construct. The

constraint specifies that the natural join between its key columns gives the extent of the
table. Although a slightly unconventional notion of primary key, this definition fits well
with the sixth normal form [13,12], since that normalises tables to have one table for
the primary key columns, and then an additional table for each non-key column of the

Comparing and Transforming Between Data Models Via an Intermediate HDM 83

ug
name ppt
Mary NR
Jane SK

student
name sid
Mary 1
John 2
Jane 3
Fred 4

course
code dept
DB CS
Fin CS
Geo Maths

result
code name grade?
DB Mary A
Fin Jane C
Fin Fred null
Geo Fred A
Geo John B

ug.name →
student.name

result.name →
student.name

result.code →
course.code

(a) Relational database schema and data

ug:
name

�

ug

id→
� �

ug:
ppt

�

�

�

student:
name

�

student

id→
� �

student:
sid

�

�

�

⊆

id→
� �

�

result:
name

�

�

result

result:
grade

�

⊇ result:
code

�

⊆ course:
code

�

course

id→
� �

course:
dept

�

�

�

(b) HDM representation of relational database schema

Fig. 4. A relational schema for the student-course database

pre-normalised table. The schema of a constraint simply needs to list the table and the
columns. For example, the primary key of 〈〈result〉〉 would be represented in the HDM
by 〈〈result〉〉 id→ (〈〈 ,result,result:code〉〉 � 〈〈 ,result,result:name〉〉). The production
rule to produce the HDM constraints is as follows:
primary key 〈〈T, C1, . . . , Cn〉〉 � ⊥

true ⇒ 〈〈T 〉〉 id→ 〈〈 , T, T :C1〉〉 � . . . � 〈〈 , T, T :Cn〉〉)
Since any key column must also be a notnull column in a valid relational schema,

this rule need only add the fact that the join of the edges leading to nodes represent-
ing key columns is reflexive. Since the table will be connected to these edges using
mandatory and unique, it follows that the join is also mandatory and unique, as shown
for the result node in Figure 4(b). For the primary key scheme 〈〈result,name,code〉〉
for the result table, the production rule generates the reflexive constraint 〈〈result〉〉 id→
〈〈 ,result,result:code〉〉 � 〈〈 ,result,result:name〉〉. For example, with the relational

84 M. Boyd and P. McBrien

data shown in Figure 4(a), this constraint along with the already stated mandatory and
unique constraints enforce the following type of instantiation of the 〈〈result〉〉 node and
key edges:

〈〈result〉〉 = {〈DB, Mary〉, 〈Fin, Jane〉, 〈Fin, Fred〉, . . . }
〈〈 ,result,result:name〉〉 =

{〈〈DB, Mary〉, Mary〉, 〈〈Fin, Jane〉, Jane〉, 〈〈Fin, Fred〉, Fred〉, . . . }
〈〈 ,result,result:code〉〉 =

{〈〈DB, Mary〉, DB〉, 〈〈Fin, Jane〉, Fin〉, 〈〈Fin, Fred〉, Fin〉, . . . }

We represent the foreign key constraint by the scheme made up of a name for the
constraint, the table and column(s) that are the foreign key, and the table and column(s)
of the referenced table.

foreign key 〈〈FK, T, C1, . . . , Cn, Tf , Cf1 , . . . , Cfn〉〉 � ⊥
true ⇒ π〈〈T :C1〉〉,...,〈〈T :Cn〉〉(〈〈 , T, T :C1〉〉 � . . . � 〈〈 , T, T :Cn〉〉) ⊆

π〈〈Tf :Cf1〉〉,...,〈〈Tf :Cfn〉〉(〈〈 , Tf , Tf :Cf1〉〉 � . . . � 〈〈 , Tf , Tf :Cf1 〉〉)

The somewhat complex constraint simply states that the join of the columns listed
in T is a subset of the join of the columns in Tf . For the common case where foreign
keys are not compound keys (i.e. n = 1), the constraint would simplify to 〈〈T :C1〉〉 ⊆
〈〈Tf :Cf1 〉〉 For example, the foreign key between ug and student is represented by
the scheme 〈〈ug fk, ug, name, student, name〉〉. Using the production rule, this scheme
becomes 〈〈ug:name〉〉 ⊆ 〈〈student:name〉〉 in the HDM.

Finally, the relational candidate key takes a similar definition to primary key, except
that all that is established is a mandatory and a unique association between the table and
a join of the candidate key columns.
candidate key 〈〈T, C1, . . . , Cn〉〉 � ⊥

true ⇒ 〈〈T 〉〉� (〈〈 , T, T :C1〉〉 � . . . � 〈〈 , T, T :Cn〉〉)
true ⇒ 〈〈T 〉〉� (〈〈 , T, T :C1〉〉 � . . . � 〈〈 , T, T :Cn〉〉)
true ⇒ (π〈〈T :C1〉〉,...,〈〈T :Cn〉〉(〈〈 , T, T :C1〉〉 � . . . � 〈〈 , T, T :Cn〉〉))�

(〈〈 , T, T :C1〉〉 � . . . � 〈〈 , T, T :Cn〉〉)
The last line ensures that the combination of columns in the candidate key appears

just once in the edge formed by the join of the candidate key column edges. In the
common case where the candidate key is not compound (i.e. n = 1), the last con-
straint simplifies to 〈〈T :C1〉〉 � 〈〈 , T, T :C1〉〉. Thus if we added the new candidate key
〈〈student,sid〉〉 to the example relational schema, then we would add to our existing
relation HDM a 〈〈student:sid〉〉� 〈〈 ,student,student:sid〉〉 constraint.

2.4 Describing UML in the HDM

UML classes are nodal constructs, and hence each UML class scheme 〈〈C〉〉 maps to a
single node 〈〈C〉〉. The extent of 〈〈C〉〉 is the set of unique object identifiers (OID) of
the class.
class 〈〈C〉〉 � 〈〈C〉〉

Comparing and Transforming Between Data Models Via an Intermediate HDM 85

name
sid

student
ppt

ug

grade[0..1]
result

code
dept

course
has
* result

exam
*

(a) A UML class diagram of the student-course database

ug

ug:
ppt

�

�

�

student:
name

�

student

�

�

student:
sid

�

�

�

⊆

�

result:
grade

�

result:has:exam

course:
code

�

course

�

�

course:
dept

�

�

�

(b) HDM representation of the UML Schema

Fig. 5. A UML schema and its equivalent HDM schema

The definition of n-ary associations in UML states that the multiplicity, L..U , of
a role, R, defines the number of instances of the class C that are associated with a
particular set of values of the other classes in the association A. Thus using ER termi-
nology, it has look-across semantics [45,21], and hence generate card() is called for
each role class with all the classes except the role class. We also make the assumption
that * is simply a shorthand for 0..*, and any single number n is a shorthand for n..n
(for example, in UML, one writes 1 as a shorthand for 1..1).

association〈〈A, R1, C1, L1..U1, . . . , Rn, Cn, Ln..Un〉〉�〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉
true ⇒ generate card(〈C2, . . . , Cn〉, 〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉, L1, U1)

...
true ⇒ generate card(〈C1, . . . , Cn−1〉, 〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉, Ln, Un)

For example, the UML association between student and course has the scheme
〈〈result,has,student,0..*,exam,course,0..*〉〉, and the production rule maps this to the

86 M. Boyd and P. McBrien

HDM edge 〈〈result:has:exam,student,course〉〉, with no constraints. Note that the
label of the HDM edge is A:R1: . . . :Rn, which encodes the various labels HDM gives
the association in a single HDM identifier. Thus the result association with role names
‘has’ and ‘exam’ gets the HDM edge name result:has:exam.

UML attributes are link-nodal constructs attached to CA, which is a UML class or
a UML association, and hence the production rule takes a similar form to that for ER
attributes or relational columns. We make the same assumptions about shorthands for
the attribute multiplicity as we did for association multiplicity, as well as noting that
the absence of explicit multiplicity means that 1..1 is assumed. Thus the sid attribute
of student has the scheme 〈〈student,sid,1..1〉〉.
attribute 〈〈CA, A, L..U〉〉 � 〈〈CA:A〉〉, 〈〈 , CA, CA:A〉〉

true ⇒ generate card(〈〈CA:A〉〉, 〈〈 , CA, CA:A〉〉, 1, *)
L..U ⇒ generate card(〈〈CA〉〉, 〈〈 , CA, CA:A〉〉, L, U)
Note that UML association classes are directly supported by these definitions of

association and attribute. An association class is simply an association that has one or
more attributes placed upon it, each UML attribute becoming an HDM node with a
nested edge that connects that node to the HDM edge that represents the association.

UML generalisations have a sophisticated constraint system that specifies that the
various classes or associations that are children of a parent class or association maybe
overlapping or disjoint, and maybe complete or incomplete. The first and last of
these keywords are ‘noise’ in the sense that they add nothing in addition to an unlabelled
generalisation. The other two add an exclusion constraint and a union constraint.

generalisation 〈〈C, C1, . . . , Cn, D〉〉 � ⊥
true ⇒ 〈〈C1〉〉 ⊆ 〈〈C〉〉

⇒ ...
true ⇒ 〈〈Cn〉〉 ⊆ 〈〈C〉〉
disjoint ∈ D ⇒ 〈〈C1〉〉 �∩ . . . �∩ 〈〈Cn〉〉
complete ∈ D ⇒ 〈〈C〉〉 = 〈〈C1〉〉 ∪ . . . ∪ 〈〈Cn〉〉

2.5 Describing the ORM in the HDM

From our analysis of the ER, relational and UML modelling languages, it may seem
‘obvious’ that ORM entity types should be modelled as nodal constructs while value
types should be modelled as link-nodal constructs. However, due to ORM’s rich seman-
tics, the similarity of value type and entity type roles in fact types, and a value-type’s
ability to play multiple roles in fact types, it is correct to model both value types and
entity types using an HDM nodal construct type.

Each entity type 〈〈E〉〉 maps to a single node 〈〈E〉〉. The extent of entity type 〈〈E〉〉
is the extent of its primary reference mode while the extent of a value type 〈〈V 〉〉 is just
the ORM value type’s set of values. Hence we have the simple definitions:
entity type 〈〈E〉〉 � 〈〈E〉〉
value type 〈〈V 〉〉 � 〈〈V 〉〉

An ORM n-ary fact type is an association between n objects where each object is
an entity type, value type, or objectified fact type. A fact type’s extent is drawn from the

Comparing and Transforming Between Data Models Via an Intermediate HDM 87

ppt
��

ug

�

student
(name)

��
sid has exam

��
result

��
grade

course
(code)

��
dept

(a) An ORM schema of the student-course database

ug

ppt

�

�

�

name

�

student

id→
� �

sid

�

�

�

⊆

grade

�

�

result:has:exam

code

�

course

id→
� �

dept

�

�

�

(b) HDM representation of the ORM schema

Fig. 6. An ORM schema of the student-course database

objects it associates and is hence modelled in the HDM as a link construct. The scheme
for the ORM fact type should describe the name FT of the fact type (if any) along
with the role name N (if any), role object R, and the mandatory nature of the object
type M in the role. Hence the fact type between 〈〈student〉〉 and 〈〈course〉〉 has the
scheme 〈〈result,has,student, ,exam,course, 〉〉 and the fact type between 〈〈student〉〉
and 〈〈sid〉〉 has scheme 〈〈 ,student, ,•,sid, , 〉〉 (where M = • corresponds to the black
circle used in ORM on objects to denote mandatory roles). These then map into the
HDM using the following production rule:
fact type 〈〈FT, N1, R1, M1, . . . , Nn, Rn, Mn〉〉 � 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉

M1 = • ⇒ generate card(R1, 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 1, ∗)
...

Mn = • ⇒ generate card(Rn, 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 1, ∗)

88 M. Boyd and P. McBrien

The names of fact types and roles are encoded into a single HDM edge label in a
similar manner to that used to encode UML association and role names into a single
HDM edge label. Note that all fact types have an implied uniqueness constraint across
all n roles, and HDM has a similar edge constraint because the extent of an edge is a
set of tuples. In ORM one can specify uniqueness constraints across n− 1 roles of an n
role fact type. Hence we define the scheme of uniqueness to take both a fact type and
the role Rx that is uniquely identified by the other roles:

uniqueness 〈〈〈〈FT, N1, R1, M1, . . . , Nn, Rn, Mn〉〉, Rx〉〉 � ⊥
true ⇒ generate card(〈R1, . . . , Rx−1, Rx+1, . . . , Rn〉,

〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 0, 1)

The production rule implements the cardinality constraint using generate card()
being called with all roles of the fact type accept the Rx being uniquely identified.

We note in passing that ORM also has a general frequency constraint type across
any number of roles. We have not needed this in our examples, but could have modelled
the mandatory and unique constraints using the more general frequency constraint; but
as there are implicit unique and mandatory constraints in an ORM schema and these
constraints are used heavily in the rules regarding a schema’s well formedness, it is
useful to model mandatory and unique as we have here.

ORM can express subtype relationships between fact roles as well as entity types.
We only use subtyping between entity types in our examples, hence we shall restrict
ourselves to just defining that below, together with the notion of disjointness and totality
of such subtypes which ORM also supports:

subset 〈〈EV, EVs〉〉 � ⊥
true ⇒ 〈〈EVs〉〉 ⊆ 〈〈EV 〉〉

disjoint 〈〈EV1〉〉, 〈〈EV2〉〉 � ⊥
true ⇒ 〈〈EV1〉〉 �∩ 〈〈EV2〉〉

total 〈〈EV, EV1〉〉, 〈〈EV, EV2〉〉 � ⊥
true ⇒ 〈〈EV 〉〉 = 〈〈EV1〉〉 ∪ 〈〈EV2〉〉
Our simple UoD does not use the above ORM constructs, but applying the above

definitions to the ORM diagram in Figure 6(a) produces the HDM in Figure 6(b), al-
most the same HDM we arrived at using the ER schema bar some trivial renaming of
nodes and edges. Note that we have assumed that the value classes implied by the pri-
mary reference modes for each entity class have been made explicit before applying the
definitions (ORM allows these to be implicit, and not stated in the ORM schema).

3 Inter Model Transformations

We now introduce five general purpose equivalence mappings that may be used on our
HDM constraint operators, and which allow us to transform between different mod-
elling languages. In particular, the relational HDM schema in Figure 4(b) may be trans-
formed into the ER HDM schema in Figure 3(b) by applying a sequence of transforma-
tions using four of the equivalence relationships.

Comparing and Transforming Between Data Models Via an Intermediate HDM 89

Section 3.6 describes the fifth general purpose equivalence preserving rule, and
shows how it is used as part of the transformation of the UML HDM schema in Fig-
ure 5(b) to the ER HDM schema. However, the UML to ER transformation as a whole
will be demonstrated to be non-equivalence preserving.

In order to give our mappings a rigorous basis, we define them using the BAV trans-
formation language [39,28,30,31] which allows the specification of bidirectional map-
pings between equivalent data sources, and also the specification of the situation where
one data source has greater information capacity than another. Hence, we first review
BAV primitive transformations for the HDM in the next subsection, before giving the
five mappings in Sections 3.2–3.6 defined using those transformation primitives. Finally
we discuss in Section 3.7 how non-equivalent data sources are identified and handled
in our approach.

3.1 HDM BAV Transformations

In the BAV approach, schemas are incrementally transformed by applying to them a
pathway of primitive schema transformations t1, . . . , tr. Each primitive transformation
ti makes a ‘delta’ change to the schema by adding, deleting or renaming just one HDM
node, edge or constraint. The model management [5] concept of a Mapping between
S1, S2 is implemented by having a well-formed pathway [47] between the two schemas.
Note that the model management concept of Compose is directly supported by the
BAV approach, since it allows a pathway between S2, S3 to be appended to the pathway
between S1, S2 to give a pathway between S1, S3. Details of how pathways can be
analyzed for their impact on information capacity can be found in [27], and work in
using BAV to perform the model management Match is found in [40] and Merge is
found in [41].

Table 2 lists those primitive transformations of the BAV language that we use in this
paper, and we now briefly review their semantics.

Table 2. BAV primitive transformations applied to HDM schema S = 〈Nodes, Edges, Cons〉,
to generate a new schema S′ = 〈Nodes′, Edges′, Cons′〉

primitive transformation reverse transformation conditions information
S → S′ S′ → S onS, S′ capacity
addNode(n,q) deleteNode(n,q) n �∈ Nodes, n ∈ Nodes′ S ≡ S′

addEdge(e,q) deleteEdge(e,q) e �∈ Edges, e ∈ Edges′ S ≡ S′

addCons(c) deleteCons(c) c �∈ Cons, c ∈ Cons′ S ≡ S′

renameNode(n,n′) renameNode(n′,n) n ∈ Nodes, n �∈ Nodes′, S ≡ S′

n′ �∈ Nodes, n′ ∈ Nodes′

renameEdge(e,e′) renameEdge(e′,e) e ∈ Edges, e �∈ Edges′, S ≡ S′

e′ �∈ Edges, e′ ∈ Edges′

extendNode(n,ql,qu) contractNode(n,ql,qu) n �∈ Nodes, n ∈ Nodes′ S ⊂ S′

extendEdge(e,ql,qu) contractEdge(e,ql,qu) e �∈ Edges, e ∈ Edges′ S ⊂ S′

extendCons(c) contractCons(c) c �∈ Cons, c ∈ Cons′ S ⊃ S′

90 M. Boyd and P. McBrien

The primitive transformation that adds a node n to a schema S in order to generate
new schema S′ is addNode(n, q), where q is a query over S specifying the extent
of n in terms of the existing constructs of S. The logical semantics of this kind of
transformation are

∀I.ExtS,I(n) = q (1)

and for this reason we categorise addNode as an exact transformation [25], and the
two schemas S, S′ have equivalent information capacity, summarised in Table 2 by
putting S ≡ S′ in the information capacity column.

When it is not possible to specify the exact extent of the new node n in terms of the
existing schema constructs, we must instead of addNode use extendNode(n, ql, qu),
where ql gives the lower bound on the extent of n, and qu gives the upper bound. The
logical semantics of this kind of transformation are

∀I.qu ⊇ ExtS,I(n) ⊇ ql (2)

and so we term extend a sound transformation [25] when considering ql and a com-
plete transformation [25] when considering qu. The query ql may just be the constant
Void, indicating no values in the extent can be derived from other constructs in the
schema. The query qu may just be the constant Any, indicating that no limit of the val-
ues in the extent can be derived from other constructs in the schema. If ql = Void and
qu = Any then the two queries may be omitted (and only this form of the transforma-
tion is used in the paper). Note that S has an information capacity which is a subset of
that of S′, which in Table 2 by putting S ⊂ S′ in the information capacity column.

The exact transformation deleteNode(c, q) when applied to schema S′ generates a
new schema S with node n removed. The extent of n may be recovered using the query
q on S, and Equation 1 above holds. Note that this implies that from a primitive trans-
formation deleteNode(n,q) used to transform S′ → S we can automatically derive
that addNode(n,q) transforms S → S′, and vice versa.

When it is not possible to specify the exact extent of node n being deleted from S′ in
terms of the remaining schema constructs, contractNode(n,ql,qu) must be used instead
of deleteNode, where Equation 2 above holds. Again, it is possible that sound query
ql may just be Void, and the complete query qu be Any, indicating that the extent of
n cannot be specified even partially, in which case the queries can be omitted from the
transformation. Note that from a primitive transformation contractNode(n,ql,qu) used
to transform S′ → S we can automatically derive that extendNode(n,ql,qu) transforms
S → S′, and vice versa.

The last type of transformation dealing with nodes is renameNode(n, n′) causes a
node n in a schema S to be renamed to n′ in a new schema S′, where in logical terms

∀I.ExtS,I(n) = ExtS,I(n′) (3)

Note that this definition implies that from renameNode(n, n′) used to transform
S → S′ we can automatically derive that renameNode(n′, n) transforms S′ → S, and
vice versa.

Comparing and Transforming Between Data Models Via an Intermediate HDM 91

A⊇B

Cn

...

C1

E

�

≡ B

Cn

...

C1

E

Fig. 7. Equivalence Relationships: Inclusion Merge

Entirely analogous arguments will give the definitions of the primitive transforma-
tions in Table 2 that handle manipulation of edges. For constraints, there are three differ-
ences. Firstly, since constraints have no extent, there is no query in the primitive trans-
formations handling constraints. Secondly, constraints have no name, and hence there
is no renameCons transformation. Thirdly, the extendCons transformation causes S′

to be more restrictive than S, and hence the information capacity of S′ is less than that
of S.

Note that the ORM HDM schema in Figure 6(b) is the same as the ER HDM schema
in Figure 3(b), except for trivial renaming of constructs. Hence we can apply equiva-
lence preserving rename transformations to make the ORM HDM schema match those
in the ER HDM schema:
renameEdge(〈〈result:has:exam,student,course〉〉, 〈〈result,student,course〉〉)

Hence the pathway of transformations describing the transformation from ER to re-
lational schemas in the following sub-sections also defines the mapping from relational
to ORM schemas, with this extra transformation step appended to the pathway.

We now move on to describe in the subsequent subsections the five mappings that
we propose as a solution to transforming between the four models detailed in the previ-
ous section.

3.2 Inclusion Merge

The Inclusion Merge equivalence in Figure 7 allows us to merge two nodes 〈〈A〉〉 and
〈〈B〉〉 together where 〈〈A〉〉 is a subset of 〈〈B〉〉 and there is a mandatory constraint from
〈〈A〉〉 to an edge e = 〈〈E, A, C1, . . . , Cn〉〉. The mandatory constraint is dropped as we
merge 〈〈A〉〉 and 〈〈B〉〉. Any edges or constraints that applied to 〈〈B〉〉 remain, and any
other (unillustrated) edges on 〈〈A〉〉 are also redirected to 〈〈B〉〉. Definition 9 gives a
pseudo code definition of this equivalence, that generates primitive transformations on
the HDM. The pseudo code first deletes the constraint between 〈〈A〉〉 and 〈〈B〉〉, and then
checks that the subset node 〈〈A〉〉 is not associated in any other subset, union or exclusion
with any other nodes, and raises an exception if that is the case. The pseudo code then
iterates over all edges that connect to node 〈〈A〉〉 and removes any mandatory constraints
involving 〈〈A〉〉. Then move dependents function (defined in Definition 10) is used to
move all edges on 〈〈A〉〉 to connect to 〈〈B〉〉. Note that this will include e and cause a new
edge e′ = 〈〈E, B, C1, . . . , Cn〉〉 to now exist. The final line of Definition 9 then deletes
〈〈A〉〉, giving a query that can restore the values of 〈〈A〉〉 from the new non-mandatory
edge e′.

92 M. Boyd and P. McBrien

Definition 9 Inclusion Merge

inclusion merge(〈〈B〉〉,〈〈E, A, C1, . . . , Cn〉〉)
deleteCons(〈〈A〉〉 ⊆ 〈〈B〉〉);
if op(〈〈A〉〉, d) ∈ Cons ∧ op ∈ {⊆, �∩,∪} then

exception
endif;
foreach e ∈ Edges forwhich e = 〈〈Ea, A, . . . 〉〉

deleteCons(〈〈A〉〉� e)
endforeach;
move dependents(〈〈A〉〉,〈〈B〉〉,id 〈〈A〉〉);
deleteNode(〈〈A〉〉,{〈x〉 | 〈x, y1, . . . , yn〉 ∈ 〈〈E, B, C1, . . . , Cn〉〉}); �

The last line of inclusion merge projects out the single arity tuples 〈x〉 that form
the extension of 〈〈A〉〉 from edge 〈〈E, B, C1, . . . , Cn〉〉.

The definition of move dependents takes three arguments, the first two (a, b) of
which must be a node or edge, and the third a mapping set that maps instances of a
to instances of b. For use in inclusion merge, the third argument should be an identity
function id, defined as id(〈〈A〉〉) = {〈a, a〉 | a ∈ 〈〈A〉〉}.

Definition 10 Move Dependents

move dependents(a,b,map)
foreach op(a, d) ∈ Cons forwhich b �= d

addCons(op(b, d));
deleteCons(op(a, d))

endforeach;
foreach op(d, a) ∈ Cons forwhich b �= d

addCons(op(d, b));
deleteCons(op(d, a))

endforeach;
foreach e ∈ Edges forwhich e = 〈〈E, a, C1, . . . , Cn〉〉

let e′=〈〈E, b, C1, . . . , Cn〉〉;
addEdge(e′,{〈y, z1, . . . , zn〉 | 〈x, z1, . . . , zn〉 ∈ e ∧ 〈x, y〉 ∈ map});
move dependents(e,e′,

{〈〈x, z1, . . . , zn〉, 〈y, z1, . . . , zn〉〉 | 〈x, y〉 ∈ map ∧ 〈x, z1, . . . , zn〉 ∈ e});
deleteEdge(e,{〈x, z1, . . . , zn〉 | 〈y, z1, . . . , zn〉 ∈ e′ ∧ 〈x, y〉 ∈ map})

endforeach; �

In Example 3, the series of transformations that will convert the HDM schema in
Figure 4(b) into that in Figure 3(b) are listed. The first two steps in the series are ap-
plications of inclusion merge, which after 2 result in the intermediate HDM schema
shown in Figure 8.

Comparing and Transforming Between Data Models Via an Intermediate HDM 93

ug:
name

�

ug

id→
� �

ug:
ppt

�

�

�

student:
name

�

student

id→
� �

student:
sid

�

�

�

⊆

id→
� �

�

result

�

result:
grade

�

course:
code

�

course

id→
� �

course:
dept

�

�

�

Fig. 8. Intermediate HDM schema in relational to ER conversion, after steps 1 and 2

Example 3 Transforming between relational and ER HDM schemas
1 inclusion merge(〈〈student:name〉〉, 〈〈 ,result:name,result〉〉)
2 inclusion merge(〈〈course:code〉〉, 〈〈 ,result:code,result〉〉)
3 identity node merge(〈〈 ,ug:name,ug〉〉)
4 unique mandatory redirection(〈〈 ,student:name,result〉〉,

〈〈 ,student:name,student〉〉)
5 unique mandatory redirection(〈〈 ,course:code,result〉〉,

〈〈 ,course:code,course〉〉)
6 identity edge merge(〈〈 ,result,student〉〉, 〈〈 ,result,course〉〉)
7 move dependents(〈〈student:name〉〉, 〈〈student〉〉, 〈〈 ,student:name,student〉〉)

�

Taking transformation step 1 and applying Definition 9, we may expand the steps
into a series of primitive transformation steps shown in Example 4. Step 1.1 is a re-
sult of the first foreach loop in Definition 9, Steps 1.2 and 1.3 result from the call to
move dependents, and 1.4 and 1.5 result from the last two lines of Definition 9.

Example 4 Primitive steps associated with transformation 1
1.1 deleteCons(〈〈result:name〉〉� 〈〈 ,result:name,result〉〉)
1.2 addEdge(〈〈 ,student:name,result〉〉,

{〈b, c〉 | 〈a, c〉 ∈ 〈〈 ,result:name,result〉〉 ∧ 〈a, b〉 ∈ id〈〈result:name〉〉}
1.3 deleteEdge(〈〈 ,result:name,result〉〉,

{〈a, c〉 | 〈b, c〉 ∈ 〈〈 ,student:name,result〉〉 ∧ 〈a, b〉 ∈ id〈〈result:name〉〉}
1.4 deleteCons(〈〈result:name〉〉 ⊆ 〈〈student:name〉〉)
1.5 deleteNode(〈〈result:name〉〉,

{〈b〉 | 〈b, c〉 ∈ 〈〈 ,student:name,result〉〉}
�

94 M. Boyd and P. McBrien

A B
E

id→
� � �

≡ B

Fig. 9. Equivalence Relationships: Identity Node Merge

The expansion of transformations 1 illustrates that inclusion merge is a data pre-
serving transformation, since it only uses add and delete BAV transformations. In par-
ticular the edge 〈〈 ,result,student:name〉〉 may be recovered by the query in 1.3 (which
in turn uses the query of 1.5 to find the extent of 〈〈result:name〉〉), and the new edge
〈〈 ,result,student:name〉〉 may be derived from existing data in 1.2 . Note that a very
similar expansion into primitive steps may be performed for 2 , with a similar argu-
ment about data preservation.

3.3 Identity Node Merge

The Identity Node Merge in Figure 9 allows us to merge the two nodes 〈〈A〉〉 and
〈〈B〉〉 together because they are identical. The constraints 〈〈A〉〉 id→ 〈〈E, A, B〉〉, 〈〈A〉〉 �

〈〈E, A, B〉〉, and 〈〈A〉〉� 〈〈E, A, B〉〉 taken together mean that every instance of the edge
〈〈E, A, B〉〉 is an identity mapping for 〈〈A〉〉, and there is exactly one such mapping in
〈〈E, A, B〉〉 for every element of 〈〈A〉〉. As each element in 〈〈E, A, B〉〉 is an identity
mapping, each element in 〈〈A〉〉 must be in 〈〈B〉〉. Conversely because we also have
〈〈B〉〉 � 〈〈E, A, B〉〉, each element in 〈〈B〉〉 must be in 〈〈A〉〉, and so 〈〈A〉〉 = 〈〈B〉〉. This
implies both 〈〈B〉〉 id→ 〈〈E, A, B〉〉 and 〈〈B〉〉 � 〈〈E, A, B〉〉, and thus the equivalences
illustrated in Figure 2(a) hold. Because we have identified them as equal, nodes 〈〈A〉〉
and 〈〈B〉〉 can be merged together and the edge 〈〈E, A, B〉〉 dropped, using Definition 11.
Note any node can have this transformation applied in reverse, copying instances into a
new node and linking the old node to the new node via an edge containing the identity
instances.

Definition 11 Identity Node Merge

identity node merge(〈〈E, A, B〉〉)
let e=〈〈E, A, B〉〉;
move dependents(〈〈A〉〉,〈〈B〉〉,e);
foreach c ∈ Cons forwhich contains(e,c)

deleteCons(c);
endforeach;
deleteEdge(e,{〈x, x〉 | 〈x〉 ∈ 〈〈B〉〉});
deleteNode(〈〈A〉〉,〈〈B〉〉); �

This identity mapping comes about by the way some modelling languages specify
a certain attribute as being an entity’s identifying attribute (such as the primary key
constraint in the relational schema).

Comparing and Transforming Between Data Models Via an Intermediate HDM 95

A

C

B
EAB

�

�

�

�

E

≡
A

C

B
EAB

�

�

�

�

E

Fig. 10. Equivalence Relationships: Unique-Mandatory Redirection

In Figure 8 we can use identity node merge to merge nodes 〈〈ug:name〉〉 and 〈〈ug〉〉
by step 3 in Example 3. Note that the constraint 〈〈ug:name〉〉 ⊆ 〈〈student:name〉〉
is not lost, but becomes 〈〈ug〉〉 ⊆ 〈〈student:name〉〉. Figure 11 is partially derived by
applying this merge.

3.4 Unique-Mandatory Redirection

The Unique-Mandatory Redirection equivalence in Figure 10 allows us to move an
edge 〈〈E, A, C1, . . . , Cn〉〉 from node 〈〈A〉〉 to node 〈〈B〉〉 because both 〈〈A〉〉 and 〈〈B〉〉
have a unique and mandatory constraint on the common edge 〈〈EAB, A, B〉〉. These
constraints together are equivalent to stating that there is a one to one correspondence
between the elements of 〈〈A〉〉 and 〈〈B〉〉 so whatever is related to an element of 〈〈A〉〉
through 〈〈E, A, C1, . . . , Cn〉〉 is equally related to the corresponding element in 〈〈B〉〉.
Moving the edge requires us to rewrite the elements of the edge, replacing in each the
value that came from 〈〈A〉〉with the corresponding value from 〈〈B〉〉 (via 〈〈EAB, A, B〉〉).

Definition 12 Unique-Mandatory Redirection

unique mandatory redirection(〈〈E, A, C1, . . . , Cn〉〉,〈〈EAB, A, B〉〉)
let e = 〈〈E, A, C1, . . . , Cn〉〉;
let map = 〈〈EAB, A, B〉〉;
if (A id→ e) ∈ Cons then exception endif;
let e′ = 〈〈E, B, C1, . . . , Cn〉〉;
addEdge(e′,{〈y, z1, . . . , zn〉 | 〈x, z1, . . . , zn〉 ∈ e ∧ 〈x, y〉 ∈ map});
move dependents(e,e′,map)
deleteEdge(e,{〈x, z1, . . . , zn〉 | 〈y, z1, . . . , zn〉 ∈ e′ ∧ 〈x, y〉 ∈ map}); �

For the HDM schema in Figure 8, we can apply 4 in Example 3 to move the edge
〈〈 ,result,student:name〉〉 from node 〈〈student:name〉〉 to node 〈〈student〉〉, becoming
edge 〈〈 ,result,student〉〉. This transformation does not lose information, because of the
constraints on the edge 〈〈 ,student:name,student〉〉, in particular 〈〈student:name〉〉�

〈〈 ,student,student:name〉〉 is implied by the other constraints present on the edge, as
illustrated in Figure 2(a). Similarly we can apply 5 to move edge 〈〈 ,result,
course:text〉〉 to become 〈〈 ,result,course〉〉. Applying these two edge redirections in
addition to the previous identity node merge results in Figure 11.

96 M. Boyd and P. McBrien

ug

ug:
ppt

�

�

�

student:
name

�

student

id→
� �

student:
sid

�

�

�

⊆

id→
� �

�

�

�

result

result:
grade

course:
code

�

course

id→
� �

course:
dept

�

�

�

Fig. 11. Intermediate HDM schema in relational to ER conversion, after steps 1 – 5

A

Bm

...

B1
E1

Em

id→
� �

� ≡

Bm

...

B1

A

Fig. 12. Equivalence Relationships: Identity Edge Merge

3.5 Identity Edge Merge

The Identity Edge Merge in Figure 12 allows us to replace the node 〈〈A〉〉 and edges
〈〈E1, A, B1〉〉 . . . 〈〈Em, A, Bm〉〉 with the single edge 〈〈A, B1 . . .Bm〉〉. The constraints

id→, �, and � between 〈〈A〉〉 and the natural join of 〈〈E1, A, B1〉〉 . . . 〈〈Em, A, Bm〉〉
mean that for each instance of node 〈〈A〉〉 there is exactly one instance of the join of
edges 〈〈E1, A, B1〉〉 . . . 〈〈Em, A, Bm〉〉. The extent of the hyper edge 〈〈A, B1 . . . Bm〉〉
is obtained from the corresponding values in 〈〈B1〉〉 . . . 〈〈Bm〉〉 for each instance of the
node 〈〈A〉〉. Because of the identity mapping, these are the same values was in 〈〈A〉〉, and
hence there is no information in the node 〈〈A〉〉 that is not in this new edge.

Definition 13 Identity Edge Merge

identity edge merge(〈〈E1, A, B1〉〉, . . . , 〈〈Em, A, Bm〉〉)
let a = 〈〈A, B1, . . . , Bm〉〉;

Comparing and Transforming Between Data Models Via an Intermediate HDM 97

addEdge(a, {〈b1, . . . , bm〉 |
〈a, b1〉 ∈ 〈〈E1, A, B1〉〉 ∧ . . . ∧ 〈a, bm〉 ∈ 〈〈Em, A, Bm〉〉});

foreach (A op e) ∈ Cons forwhich e ∈ {〈〈E1, A, B1〉〉, . . . , 〈〈Em, A, Bm〉〉}
deleteCons(A op e)

endforeach;
move dependents(〈〈A〉〉,a,id 〈〈A〉〉);
deleteNode(〈〈A〉〉,a) �

In Figure 11 we can use identity node merge to replace the node 〈〈result〉〉 with the
edge 〈〈result,student,course〉〉, in step 6 of Example 3. In this case the new edge
is binary because the natural join was between two edges. Note that as part of this
process, the edge 〈〈 ,result,result:grade〉〉 from 〈〈result〉〉 to 〈〈result:grade〉〉 becomes
〈〈 ,〈〈result,student,course〉〉,result:grade〉〉.

All that is left for us to do in order to obtain the HDM ER schema is to move the
constraint 〈〈ug〉〉 ⊆ 〈〈student:name〉〉 to 〈〈ug〉〉 ⊆ 〈〈student〉〉. This is correct to do for
similar reasons to the unique-mandatory redirection being correct for edges, but here we
are moving a constraint between two nodes for which, in addition, we know the extent
to be identical. This redirection is achieved by using the move dependents subroutine
in 7 , and the result is Figure 3(b).

3.6 Node Reidentify

Object orientation introduces the concept of there being a unique object identifier
(OID) that is associated to instances of a class, and that OID is not represented as an
attribute. Thus when we look at the HDM representation of the UML shown in Figure 5,
although similar to those for the relational, ER and ORM schemas, there is no use of
the

id→ constraint made between nodes representing the UML class, such as 〈〈student〉〉,
and edges to nodes representing UML attributes, such as 〈〈 ,student,student:name〉〉.
This is because 〈〈student〉〉 has as its extent the object identifiers of the student UML
class, whilst 〈〈student:name〉〉 has as its extent the names of students.

Definition 14 Node Reidentify

node reidentify(〈〈A〉〉,map)
addNode(〈〈A′〉〉,{〈b〉 | 〈a〉 ∈ 〈〈A〉〉 ∧ 〈a, b〉 ∈ map});
foreach (〈〈As〉〉 ⊆ 〈〈A〉〉) ∈ Cons

node reidentify(〈〈As〉〉,map)
endforeach
move dependents(〈〈A〉〉,〈〈A′〉〉,map);
deleteNode(〈〈A〉〉,{〈a〉 | 〈b〉 ∈ 〈〈A′〉〉 ∧ 〈a, b〉 ∈ map})
renameNode(〈〈A′〉〉,〈〈A〉〉) �

Example 5 Transforming between UML and ER HDM schemas
8 extendCons(〈〈student:name〉〉� 〈〈 ,student,student:name〉〉)
9 inverse identity node merge(〈〈student〉〉, 〈〈student:oid〉〉)

10 deleteCons(〈〈student〉〉 id→ 〈〈 ,student,student:oid〉〉)

98 M. Boyd and P. McBrien

11 node reidentify(〈〈student〉〉, {〈x, y〉 |
〈o, x〉 ∈ 〈〈 ,student,student:oid〉〉 ∧ 〈o, y〉 ∈ 〈〈 ,student,student:name〉〉})

12 addCons(〈〈student〉〉 id→ 〈〈 ,student,student:name〉〉)
13 extendCons(〈〈course:code〉〉� 〈〈 ,course,course:code〉〉)
14 inverse identity node merge(〈〈course〉〉, 〈〈course:oid〉〉)
15 deleteCons(〈〈course〉〉 id→ 〈〈 ,course,course:oid〉〉)
16 node reidentify(〈〈course〉〉, {〈x, y〉 |

〈o, x〉 ∈ 〈〈 ,course,course:oid〉〉 ∧ 〈o, y〉 ∈ 〈〈 ,course,course:code〉〉})
17 addCons(〈〈course〉〉 id→ 〈〈 ,course,course:code〉〉)
18 renameEdge(〈〈:has:exam,student,course〉〉, 〈〈result,student,course〉〉)
19 deleteCons(〈〈course〉〉� 〈〈 ,course,course:oid〉〉)
20 deleteCons(〈〈course〉〉� 〈〈 ,course,course:oid〉〉)
21 deleteCons(〈〈course:oid〉〉� 〈〈 ,course,course:oid〉〉)
22 deleteCons(〈〈course:oid〉〉� 〈〈 ,course,course:oid〉〉)
23 contractEdge(〈〈 ,course,course:oid〉〉)
24 contractNode(〈〈course:oid〉〉)
25 deleteCons(〈〈student〉〉 � 〈〈 ,student,student:oid〉〉)
26 deleteCons(〈〈student〉〉 � 〈〈 ,student,student:oid〉〉)
27 deleteCons(〈〈student:oid〉〉� 〈〈 ,student,student:oid〉〉)
28 deleteCons(〈〈student:oid〉〉� 〈〈 ,student,student:oid〉〉)
29 contractEdge(〈〈 ,student,student:oid〉〉)
30 contractNode(〈〈student:oid〉〉)

�

When transforming between between an OO model such as UML, and key based
models such as ORM, ER or relational, we must overcome the fundamental difference
in data modelling based on OIDs and natural keys. This will require us finding attributes
or associations of the UML class that can be used to identify instances of the UML class.

Comparing the UML schema in Figure 5 with the ER schema in Figure 3, the HDM
schemas of the two appear similar. One difference is trivial: the edge between 〈〈student〉〉
and 〈〈course〉〉 has a different name in the two schemas. The other difference is be-
tween the use of OIDs and natural keys. The ER HDM schema, using natural keys, has
〈〈student〉〉 id→〈〈 ,student,student:name〉〉 and 〈〈course〉〉 id→〈〈 ,course,course:code〉〉,
whereas the UML HDM, using OIDs, does not have these constraints. Example 5 lists
a sequence of transformations that converts the UML schema into an ‘ER compatible’
HDM schema that has explicit attributes for the OIDs, and uses a natural key to identify
the ER entity instances. The following steps explain the example:

1. Missing from the UML schema is any definition of natural keys for the UML
classes. Hence step 8 introduces a new constraint that indicates that name is a
candidate key for student.

2. The inverse of identity node merge in step 9 generates a new node 〈〈student:oid〉〉,
connected to 〈〈student〉〉 by a new edge 〈〈 ,student,student:oid〉〉. If for example

Comparing and Transforming Between Data Models Via an Intermediate HDM 99

the node 〈〈student〉〉 had the extent {〈&1〉, 〈&2〉, 〈&3〉, 〈&4〉} before this step, then
the new edge will have as its extent
{〈&1, &1〉, 〈&2, &2〉, 〈&3, &3〉, 〈&4, &4〉}.

3. Transformations 10–12 have the net effect of repopulating the 〈〈student〉〉 node
with values of the 〈〈student:name〉〉 attribute, and changing its key from oid to
name. For example, if in the schema that results from 9 〈〈 ,student,
student:name〉〉 had extent

{〈&1, ‘Mary’〉, 〈&2, ‘John’〉, 〈&3, ‘Jane’〉, 〈&4, ‘Fred’〉}
then the map generated would be the same list, and in the schema after 11 , the node
〈〈student〉〉 would have the extent {〈‘Mary’〉, 〈‘John’〉, 〈‘Jane’〉, 〈‘Fred’〉}, and the
edge 〈〈 ,student,student:oid〉〉 would have the extent

{〈‘Mary’, &1〉, 〈‘John’, &2〉, 〈‘Jane’, &3〉, 〈‘Fred’, &4〉}
The result of after 12 is shown in Figure 13.

4. Transformations 13–17 perform a similar conversion of the 〈〈course〉〉 node into a
natural key based construct, using code as the key.

5. Transformation 18 deals with the trivial problem of renaming the edge between
〈〈student〉〉 and 〈〈course〉〉 to match the name in the ER schema.

6. Transformations 19–30 delete the 〈〈student:oid〉〉 and 〈〈course:oid〉〉 nodes (with
their associated constraints and edges). Note that the use of contract transformations
represents the fact that you are unable to derive the oid values from the ER schema.

If the transformations in Example 5 are compared with the BAV transformation
summary Table 2, we see that the UML schema has higher information capacity than the
ER schema, due to its use of OIDs and lack of key constraints. Note that alternatively,
step (6) could be omitted, and the ER schema could be enhanced with oid attributes, if it
was intended to use the ER schema to more fully represent the UML schema. However,
the UML would still lack the key information present in the ER schema.

3.7 Non-equivalent Schemas

The examples in Figures 3–6 were deliberately chosen to illustrate how we could draw
an equivalence between schemas with the same information capacity (with the excep-
tion of the UML object identifiers and the other models use of keys). In practice, mod-
elling languages have different expressive powers, and hence there may be no equivalent
schema.

For example, changing the cardinality constraint in Figure 3(a) of student being as-
sociated with result from 0:N to 1:N would result the addition in Figure 3(b) of a HDM
constraint 〈〈student〉〉�〈〈result,student,course〉〉. If we review the arguments outlined
in Sections 3.2–3.5 with this extra constraint in place then we would run into a prob-
lem. The reversed edge redirection from 〈〈 ,result,student〉〉 in Figure 11 to 〈〈 ,result,
student:name〉〉 in Figure 8 carries the mandatory constraint introduced by 1:N, giv-
ing an HDM constraint 〈〈student:name〉〉�〈〈result,student,course〉〉. When we come
to reverse the inclusion merge that merged 〈〈result:name〉〉 into 〈〈student:name〉〉 to
enable the relationship between 〈〈result〉〉 and 〈〈student:name〉〉 to be represented as a
foreign key, we are unable to carry this mandatory constraint down to 〈〈result:name〉〉.
This is because the relational schema in Figure 4(a) cannot be altered to express the fact

100 M. Boyd and P. McBrien

ug

ug:
ppt

�

�

�

student:
sid

�

student:
name

�

student

�

�

id→
� �

student:
oid

�

�

�

�

⊆

�

result:
grade

�

:has:exam

course:
code

�

course

�

�

course:
dept

�

�

�

Fig. 13. UML to ER mapping after 12

that every student.name must be referenced by at least one result.name. This lost
constraint is, therefore, not a weakness in the approach, but an example of the approach
formally identifying what information from the ER schema cannot be represented in
the relational schema. In this particular case, it might appear that we could repair the
relational schema by adding the foreign key constraint student.name → result.name,
but this would not be legal since result.name is not a candidate key of result.

4 Handling Additional Modelling Concepts

Figure 14(a) illustrates an ORM schema of an extended version of the student-course
database where, as we will show, the ORM schema is able to represent some aspect
of the UoD that one or more of our other three data models is unable to represent.
The additions made to the ORM schema of Figure 6 are described in the following
paragraphs under headings which indicate the category of modelling concept they fall
under, and we discuss the extent to which the relational, ER and UML models may
handle these types of concepts.

Candidate Keys. The ORM model of Figure 14(a) has reference/predicate between
value 〈〈sid〉〉 and entity 〈〈student〉〉 where both roles are key. This implies that we can
identify 〈〈student〉〉 by either 〈〈name〉〉 or by 〈〈sid〉〉. This concept can be represented
in a relational schema with the 〈〈student,sid〉〉 attribute being a candidate key. Neither
the ER nor UML models have a method of representing this concept however.

Typically, ER models do not make explicit the relationships between an entity and
its attributes, but instead use some sort of syntax with an attribute’s name to indicate

Comparing and Transforming Between Data Models Via an Intermediate HDM 101

ppt
��

ug pg

� �

student
(name)

�� ��
sid

��

��
result

position
(no)

��
grade

course
(code)

��
dept

(a) ORM schema of an extend student-course database

ug

ug:
ppt

�

�

�

�∩

pg

student:
name

�

student

id→
� �

student:
sid

�

�

�

�

⊆

⊆

∪

result:
grade

�

�

result:::

course

id→
� �

��

course:
code

�

course:
dept

�

�

�

position:
no

�

position

id→
� �

(b) HDM representation of the ORM schema

Fig. 14. An extended student-course database

that it is (or is part of) the primary identifier: no other uniqueness constraints can be
expressed. With the more elaborate ER syntax where attribute/entity cardinality con-
straints are explicit, a one-to-one relationship is synonymous with the primary identifier
and therefore can only be expressed once per entity.

Because of UML’s reliance on object identifiers, it does not require classes to have
value-based reference schemes and indeed requires nonstandard extensions to its nota-
tion to express an attribute’s uniqueness in its association with its class.

102 M. Boyd and P. McBrien

Note that in our HDM production rules for UML there is no rule that generates a
uniqueness constraint from an attribute to the edge associating it to its class. In our
HDM production rules for ER the only way to generate this constraint is in conjunction
with a reflexive constraint.

If we were to convert our extended ORM schema into an HDM schema that could
have been produced by an equivalent ER schema, we would have to drop the unique-
ness constraint from either 〈〈sid〉〉 or 〈〈student〉〉, or extend the ER language to handle
candidate keys. For UML, both uniqueness constraints must be dropped, since it has no
support for any keys (except by using its constraint language).

Disjointness between entities. The ORM model of Figure 14(a) has an additional sub-
class entity 〈〈pg〉〉 that is disjoint from 〈〈ug〉〉, and in addition, 〈〈pg〉〉 and 〈〈ug〉〉 are total
w.r.t. entity 〈〈student〉〉.

The disjointness and totality can not be represented in the relational model, since
the relational model has no constructs that make use of either the HDM disjoint or
union constraints. If we wanted to model our extended ORM example using a relational
schema we would have to drop the exclusion constraint between 〈〈ug〉〉 and 〈〈pg〉〉 as
well as the union constraint between these subsets and 〈〈student〉〉.

There are several well known ways we may attempt to model the total partition.

– We could represent each subset with a table containing the columns common to
just that subset, and a primary key that is also a foreign key to the superclass table
〈〈student〉〉. The problem is that there is no way to enforce that at most one instance
of some referring foreign key exists for each instance of a primary key, i.e. that the
subclass tables are disjoint.

– With some more elaborate transformations we could change the subclass identifi-
cation into a column of the superclass telling us which subclass table we should
join each instance to. This would enforce the exclusion constraint, and if we made
the column not nullable it would also enforce the union constraint. The problem
is that the relational model has no way of specifying that a value in a column in
the superclass table means that the superclass table joins with a particular subclass
table.

– With yet more transformations we could use the subclass-identifying column as in
(4) and make each column of each subtype a nullable column of the supertype table
where it is set to null when not applicable, and have no subtype tables. Again, the
relational model has no way of specifying that certain columns must, or must not,
be null depending on the value held in another column.

Therefore, despite there being several ways to model subclasses in the relational
model, we can not fully represent the exclusion and union constraints involving 〈〈ug〉〉
and 〈〈pg〉〉. The UML and ER modelling languages are able to represent these con-
straints.

Cardinality constraints of n-ary relationships. The ORM model of Figure 14(a) has
a ternary ORM fact type between entities 〈〈student〉〉, 〈〈course〉〉, and 〈〈position〉〉.
This fact type has two overlapping keys, the first states that any pair of 〈〈student〉〉

Comparing and Transforming Between Data Models Via an Intermediate HDM 103

student course

position

result
0:N

0:N
0:N

(a) Look here semantics

student course

position

result
1..1

0..N
1..1

(b) Look across semantics

Fig. 15. Alternative ER ternary-relationship cardinality constraints

and 〈〈course〉〉 instances may appear at most once in the fact, and the second that any
pair of 〈〈position〉〉 and 〈〈course〉〉 instances may appear at most once in the fact.

Whilst it is well known that look-across and look-here cardinality constraints have
equivalent expressive power for binary relationships, it is rather less well known that
this equivalence does not extend to n-ary relationships [21]. In particular, the use of
keys on the ORM ternary fact type is not representable in the ER modelling language as
we defined it in Section 2.2, since we choose look-here cardinality constraints. Look-
here constraints are restricted to express the cardinality of just a single entity in the
relationship. The use of HDM unique constraints in Figure 14(b) has no representation
as ER model look-here constraints. Hence the nearest representation of the ternary rela-
tionship we can achieve is shown in Figure 15(a), where all cardinality constraints are
removed (i.e. 0:N is used, meaning that the relationship is unrestricted).

The UML model is capable of describing this concept, since it uses look-across car-
dinality constraints. Many ER modelling languages also use look-across semantics, and
hence we could represent the ORM in such languages as shown in Figure 15(b), where
the use of the symbol .. between lower and upper bounds for cardinality constraints
indicates the use of look-across semantics1.

To generalise, for look-here semantics, we have the restriction on the use of HDM
mandatory and unique constraints from Definition 5 to m = 1 (i.e. only one node or
edge is restricted as mandatory or unique), and for look-across semantics the restriction
is that m = n− 1 for an n-ary relationship.

5 Related Work

Graphs and graph transformations are a subject of fundamental interest to computer
science, and therefore have been very widely studied [48], and in particular have been
studied with application to schema transformation between different modelling lan-
guages. What we will now do is set our work in the context of other work (and thus

1 Whilst this example might indicate that look-across semantics have advantages, there will be
other modelling situations that would be better modelled with look-here constraints. There are
also operational issues to consider, in that look-across constraints on n-ary relationships are
difficult to implement: for example, if mandatory were used in n-ary relationships, then insert-
ing or deleting an instance from one entity will require more than one relationship instance to
be inserted or deleted. However, since we are in this paper only studying the logical aspects of
data models, we will not study this issue further.

104 M. Boyd and P. McBrien

demonstrate it to be distinctive) by discussing the answer to three general questions
one might ask about work in the area of ‘intermodel transformation’. Note that we ex-
clude from the discussion issues associated with modelling languages that are not set
oriented, and also the typing of data, since these matters are outside the scope of the
work presented in this paper.

What is being modelled, and how is it modelled? The first distinction is between graphs
which model the dynamic behaviour of a computer system (a recent survey may be
found in [3], and general tools to model software have been constructed such as the
PROGRES system [33]), and graphs which model the static (i.e. data) aspect of the
system, in which area our work falls into. There is a degree of overlap between the
two, in that programs must manipulate data to perform useful tasks (for example in the
PROGRES system [34]).

Considering work that is focused on static data modelling via graphs, the next dis-
tinction we can make is between systems that are data model specific, or those which
handle multiple models. This is not a binary distinction, but denotes a spectrum. At one
extreme we find systems that map between schemas in a single modelling language: nor-
mally the relational model such as in the self-documenting data models of [26], or the
initial version of Clio [50]. In the middle of the spectrum, much work has concentrated
on converting between just a few specific modelling languages: for example between
relational and ER [1,36], ORM to UML or relational [20], relational and generic ob-
ject oriented models [11,23], XML and relational data [37], etc. Our work, along with
[18,2,10,7,44], attempts to provide a more flexible framework, and demonstrate how
the framework is adaptable to a wide range of data modelling languages.

Within approaches that deal with multiple models, there is then the distinction to
make as to how the approaches handle the requirements of multiple data modelling
languages. Invariably, some common data model (CDM) [43] is used as a intermedi-
ate language, into which schemas of all other data modelling languages are translated.
There is then the choice of how expressive with CDM language should be [17]. Some
approaches take a union of all modelling constructs to form a high level CDM which has
all the features of the models being represented (for example, by having constructs for
key, aggregation, function dependency, and so on). DB-MAIN [18,22,17] and MDM
[2] are examples of tools that take this approach. Our work, and [10,7,44], instead use
a low level CDM, where the CDM has a few simple modelling constructs, plus the
ability to express some constraints over those modelling constructs. Our work differs
from other approaches in having developed a small set of constraint primitives that may
be used instead of general logical expressions. The constraint primitives are relatively
fine grained, which has the advantage that our transformations can deal with just those
aspects of the constraints that are relevant to the particular transformation.

What type of Graph Language is used? The notion of a ‘graph’ is a very general one,
but we will restrict ourselves to saying that we are considering languages that have
the concept of there being nodes, along with some method of defining relationships
between those nodes. From that basis, there have been a wide range of variations of what
semantics are attached to the nodes and relationships. A major distinction is between
graph models that are schema models where data is just the values associated with the
extent of the nodes and relationships. The HDM, and [26,2,44,18,10,16,46] fall into this

Comparing and Transforming Between Data Models Via an Intermediate HDM 105

category. Alternatively, the graph models may be two-level models, modelling as nodes
and associations between nodes both the schema and the data instances. Examples of
this approach include [7,23].

Another important feature to distinguish is what relationships are provided in the
graph model. Using the terminology of the HDM, we can distinguish between relation-
ships that model (1) edges (i.e. data that is restricted in extent to values that appear in
the nodes that the edge connects), (2) constraints (i.e. just restrict the values that may
appear in the nodes that the relationship connects) or (3) edge-constraints (i.e. are edges,
with some implied constraints).

Perhaps surprisingly, some graph models have just nodes and constraints. For ex-
ample, MDM has three types of node — abstract, aggregation and lexicals — and six
types of constraints (which they call edges) that represent functional dependency, mul-
tivalued functional dependency, components of aggregation, keys of aggregation, and
keys of abstract. Also, the ULD [7] representation language has nodes representing sets
of tuples called ‘constructs’ which may have first order logic constraints placed on their
extent, and WOL [16] models nodes as classes, with the notion of keys used to identify
class instances, and general purpose constraint language to use over the class instances.

A common type of graph language is to have nodes and binary edges, such as in
Clio, possibly with additional constraints, such as [26,10]. In [44] the reserved graph
grammar (RGG) is used to represent data models, where an RGG is comprised of two
types of node, and binary edges between these nodes, and some constraint relationships.

A hypergraph model was used in the specific case of relational schema transfor-
mations in [51], and nested hypergraphs have been studied as a general framework for
modelling complex objects [38]. The higher-order ER model (HERM) [46] is similar
to the HDM, in that it is also a nested hypergraph model: it allows for n-ary relation-
ships which may connect to entities or other relationships. However, the HERM still
distinguishes between attributes and entities, and it uses relatively course grained con-
straints. In particular, cardinality constraints are not decomposed into two primitives as
they are in this paper, nor is there the equivalent of our reflexive constraint. Although
there is some discussion in [46] about mapping HERM to relational and network mod-
els, we are not aware of other work that uses nested hypergraphs as a general basis
for mapping between schemas in different modelling languages. An advantage of the
HDM over other approaches is that it clearly separates those constructs that have an
extent (nodes and edges) from those which restrict the extent of other constructs (con-
straints). Another advantage of the use of a hypergraph based model is that it has a
natural mapping to all higher level modelling languages we have studied to date.

How are the transformations specified? The notion of transforming schemas is widely
studied, and surveys of database transformations can be found in [4,15]. A distinction
that can be drawn between most previous work and ours is the level of granularity
at which the transformations between schemas are presented. Most work [18,26,44,16]
takes a coarse grain approach, where a transformation will specify a semantic mapping
between equivalent structures in the high level modelling language, such as the map-
ping between a many-many relationship in one schema to an entity with two one-many
relationships. In our approach and in [10,6], the aim is to specify transformations at a
fine grain level. Our approach differs in that our transformations are schema oriented,

106 M. Boyd and P. McBrien

in the sense that we incrementally add, delete or rename single constructs in the HDM,
rather than be query oriented as in [10,6] where they specify the query that is used to
map sets of constructs in one model to sets of constructs in another. The use of BAV
transformations has the advantage that it establishes a bidirectional mapping between
schemas.

6 Acknowledgments, Summary and Future Work

The original HDM and its implementation in the AutoMed project was developed in col-
laboration between Imperial College and Birkbeck College, and the AutoMed project
was funded by the EPSRC. We acknowledge the contribution of all the AutoMed project
members to many discussions of the work presented in this paper, and also acknowl-
edge the reviewers of this paper for many helpful suggestions and for detecting various
errors in the early drafts of this paper.

In this paper we have extended the hypergraph data model (HDM) [39]. The
HDM differs from normal graphs in that edges may connect together any number of
nodes or edges rather than just two nodes. HDM nodes and edges have an extent, with
the extent of an edge being constrained to take values that must appear in the extent of
the nodes or other edges it connects.

The HDM in [39] allows arbitrary constraints. Our extension in this paper is to de-
fine six fundamental constraints that we believe cover the majority of features in the
popular high level data modelling languages. We have used these to precisely define
mappings between the HDM schema and a representative set of features from the rela-
tional, ER, ORM and UML-class data models.

We have taken an example UoD, and given schemas for that UoD in four high level
data models named above. Then using our mappings we have derived an equivalent
HDM representation for each. The similarity of each HDM graph with its high level
data model’s counterpart illustrates the fact that many of the semantics of these high
level data models implied by their graphical structures are similar across the spectrum
of data models, and this commonality is captured by the graphical structure of HDM.
Although each HDM schema was shown to be equivalent (with the exception of some
aspects of the UML model) in the sense that each has the same information capacity,
they were syntactically different.

We reviewed the set of primitive reversible transformations on HDM graphs that
we have used extensively elsewhere in our schema integration and evolution work
[27,39,29,30]. We then gave five equivalence preserving graph transformations pred-
icated on using only our six fundamental constraints, and defined in terms of these
primitive HDM transformations.

We then showed how the three equivalent HDM graphs from the ER, relational and
ORM schemas can be converted into each other through a sequence of these equiva-
lence preserving transformations. The mappings from the high level data models to their
HDM representations, along with the equivalence transformations between them show
that these three schemas are equivalent, by virtue of the fact that only add, delete and
rename transformations were required to implement the mapping. As the equivalence
transformations are built from HDM’s reversible primitive transformations, queries can

Comparing and Transforming Between Data Models Via an Intermediate HDM 107

be rewritten from one schema to another. In principle, we could therefore migrate data
from an instance of a schema in one data modelling language to an instance of an equiv-
alent schema in a different data modelling language.

We also discussed how our approach identifies when two HDM schemas are not
equivalent by virtue of any ‘left over’ constraints from one schema when we try to
convert it into the other schema (after transformations are applied, there are some con-
straints in one schema that do not appear in the other). This was used to show exactly
how the UML schema from the example UoD differs from the other three schemas.
We also outlined how our approach might be used to demonstrate that some features
of a high level data modelling language may not be representable in another. Note this
does not prove that the two schemas are not equivalent: to realise this goal we would
need to prove that our equivalence transformations are adequate to convert between any
two equivalent HDM schemas, and also prove that every feature of the data models in
question are mapped into an equivalent set of HDM model constructs.

Our future work will expand our approach to take account of type information in a
data source, and also to model list and bag based data models, such as XML (which has
list based semantics) and SQL (i.e. the relational model with bag semantics). We will
also investigate heuristic search techniques to determine automatically which equiva-
lence preserving transformations are required to map a schema in one modelling lan-
guage into a schema in another modelling language.

References

1. M. Andersson. Extracting an entity relationship schema from a relational database through
reverse engineering. In Proc. ER’94, LNCS, pages 403–419. Springer, 1994.

2. P. Atzeni and R. Torlone. Management of multiple models in an extensible database design
tool. In Proc EDBT’96, volume 1057 of LNCS, pages 79–95. Springer-Verlag, 1996.

3. L. Baresi and R. Heckel. Tutorial introduction to graph transofrmation: A software engi-
neering perspective. In A. Corradini et al, editor, Proc. ICGT, volume 2505 of LNCS, pages
402–429. Springer-Verlag, 2002.

4. C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

5. P.A. Bernstein. Applying model management to classical meta data problems. In Proc.
CIDR’03, 2003.

6. S. Bowers and L. Delcambre. On modeling conformance for flexible transformation over
data models. In Knowledge Transformation for the Semantic Web, pages 34–48. IOS Press,
2003.

7. S. Bowers and L. Delcambre. The uni-level description: A uniform framework for repre-
senting information in multiple data models. In Proc. ER’03, volume 2813 of LNCS, pages
45–58. Springer-Verlag, 2003.

8. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A
BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, volume
3084 of LNCS, pages 82–97. Springer-Verlag, 2004.

9. M. Boyd and P.J. McBrien. Towards a semi-automated approach to intermodel transfor-
mations. In Proc. EMMSAD 04, CAiSE Workshop Proceedings Volume 1, pages 175–188,
2004.

10. K.T. Claypool and E.A. Rundensteiner. Sangam: A framework for modeling heterogeneous
database transformations. In Proc. ICEIS 03, pages 219–224, 2003.

108 M. Boyd and P. McBrien

11. C.J. Date. Object identifiers vs. relational keys. In Relational Database: Selected Writings
1994–1997 [14], chapter 12, pages 457–476.

12. C.J. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition edition, 2004.
13. C.J. Date, H. Darwen, and N.A. Lorentzos. Temporal Data and the Relational Model. Mor-

gan Kaufmann, 2003.
14. C.J. Date, H. Darwen, and D. McGoveran. Relational Database: Selected Writings 1994–

1997. Addison-Wesley, 1998.
15. S.B. Davidson, P. Buneman, and A.S. Kosky. Semantics of database transformations. In

Semantics in Databases, LNCS, 1998.
16. S.B. Davidson and A.S. Kosky. WOL: A language for database transformations and con-

straints. In Proc. ICDE97, pages 55–65, 1997.
17. J-L. Hainaut. Transformation-based database engineerig. In Transformation of Knowledge,

Information, and Data [48], chapter 1, pages 1–28.
18. J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, and D. Roland. Database evolution: the

DB-MAIN approach. In Proc. ER’94, LNCS, pages 112–131. Springer, 1994.
19. P. Hall, J. Owlett, and S.J.P. Todd. Relations and entities. In G.M. Nijssen, editor, Modelling

in Data Base Management Systems. North-Holland, 1975.
20. T. Halpin. Information Modeling and Relational Databases. Academic Press, 2001.
21. S. Hartmann. Reasoning about participation constraints and Chen’s constraints. In Proc.

14th Australasian database conference, pages 105–113. Australian Computer Society, 2003.
22. J-M. Hick and J-L. Hainaut. Strategy for database application evolution: The DB-MAIN

approach. In Proc. ER’03, volume 2813 of LNCS, pages 291–306. Springer-Verlag, 2003.
23. J.H. Jahnke and A. Zündorf. Apply graph transformations to database re-engineering. In

Handbook of Graph Grammars and Computing by Graph Transformations, volume 2, chap-
ter 6. World Scientific, 1999.

24. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrating data in
the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

25. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages 233–246.
ACM, 2002.

26. L. Mark and N. Roussopoulos. Integration of data, schema and meta-schema. In Proc. ER83,
pages 585–602, 1983.

27. P.J. McBrien and A. Poulovassilis. A formalisation of semantic schema integration. Infor-
mation Systems, 23(5):307–334, 1998.

28. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

29. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database architec-
tures, a schema transformation approach. In Proc. CAiSE’02, volume 2348 of LNCS, pages
484–499. Springer, 2002.

30. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03, pages 227–238. IEEE, 2003.

31. P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both as view
rules. In Proc. DBISP2P, at VLDB’03, pages 91–107, 2003.

32. R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Information Systems, 19(1):3–31, 1994.

33. M. Munch. Programmed graph rewriting system PROGRES. In In Proc. AGTIVE’99, volume
1779 of LNCS, pages 441–448. Springer-Verlag, 2000.

34. M. Munch, A. Schurr, and A.J. Winter. Integrity constraints in the multi-paradigm language
progres. In H. Ehrig et al, editor, Graph Transformation, volume 1764 of LNCS, pages 338–
352. Springer-Verlag, 2000.

35. S. Patig. Measuring expressiveness in conceptual modeling. In Proc. CAiSE2004, volume
3084 of LNCS, pages 127–141. Springer-Verlag, 2004.

Comparing and Transforming Between Data Models Via an Intermediate HDM 109

36. J-M. Petit, F. Toumani, J-F. Boulicaut, and J. Kouloumdjian. Towards the reverse engineering
of denormalized relational databases. In Proc. ICDE’96, pages 218–227, 1996.

37. L. Popa, M.A. Hernandez, and Y. Velegrakis et al. Mapping XML and relational schemas
with Clio. In Proc. ICDE’02, pages 498–499, 2002.

38. A. Poulovassilis and M. Levene. A nested-graph model for the representation and manipula-
tion of complex objects. ACM Trans. on Information Systems, 12(1):35–68, 1994.

39. A. Poulovassilis and P.J. McBrien. A general formal framework for schema transformation.
Data and Knowledge Engineering, 28(1):47–71, 1998.

40. N. Rizopoulos. Automatic discovery of semantic relationships between schema elements. In
Proc. of 6th ICEIS, 2004.

41. N. Rizopoulos and P.J. McBrien. A general approach to the generation of conceptual model
transformations. In Proc. CAiSE’05, volume 3520 of LNCS. Springer-Verlag, 2005.

42. K. Schewe. Design theory for advanced datamodels. In Proc. 12th Australasian Conf. on
Database Technologies, pages 3–9, 2001.

43. A. Sheth and J. Larson. Federated database systems. ACM Computing Surveys, 22(3):183–
236, 1990.

44. G. Song, K. Zhang, and J. Kong. Model management through graph transformations. In
Proc. Visual Languages and Human-Centric Computing, pages 75–82. IEEE, 2004.

45. I.Y. Song, M. Evans, and E.K. Park. A comparative analysis of entity-relationship diagrams.
Journal of Computer & Software Engineering, 3(4):427–459, 1995.

46. B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology. Springer,
2000.

47. N. Tong. Database schema transformation optimisation techniques for the AutoMed system.
In Proc. BNCOD’03, volume 2712 of LNCS, pages 157–171. Springer, 2003.

48. P. van Bommel. Transformation of Knowledge, Information, and Data. Idea Group, 2005.
49. R. Wieringa. A survey of structured and object-oriented software specification methods and

techniques. ACM Computing Surveys, 30(4):459–527, 1998.
50. L.L. Yan, R.J. Miller, L.M. Haas, and R. Fagin. Data-driven understanding and refinement

of schema mappings. In Proc. SIGMOD’01, pages 485–496, 2001.
51. C. Zaniolo and M. Melkanoff. A formal approach to the definition and the design of concep-

tual schemata for database systems. ACM TODS, 7(1):24–59, 1982.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 110 – 145, 2005.
© Springer-Verlag Berlin Heidelberg 2005

iASA: Learning to Annotate the Semantic Web*

Jie Tang**, Juanzi Li, Hongjun Lu, Bangyong Liang, Xiaotong Huang,
and Kehong Wang

Department of Computer Science, Tsinghua University, Beijing, 100084, P.R. China
{j-tang02, liangby97}@mails.tsinghua.edu.cn
{ljz, x.huang, wkh}@keg.cs.tsinghua.edu.cn

Abstract. With the advent of the Semantic Web, there is a great need to
upgrade existing web content to semantic web content. This can be
accomplished through semantic annotations. Unfortunately, manual annotation
is tedious, time consuming and error-prone. In this paper, we propose a tool,
called iASA, that learns to automatically annotate web documents according to
an ontology. iASA is based on the combination of information extraction
(specifically, the Similarity-based Rule Learner—SRL) and machine learning
techniques. Using linguistic knowledge and optimal dynamic window size, SRL
produces annotation rules of better quality than comparable semantic annotation
systems. Similarity-based learning efficiently reduces the search space by
avoiding pseudo rule generalization. In the annotation phase, iASA exploits
ontology knowledge to refine the annotation it proposes. Moreover, our
annotation algorithm exploits machine learning methods to correctly select
instances and to predict missing instances. Finally, iASA provides an
explanation component that explains the nature of the learner and annotator to
the user. Explanations can greatly help users understand the rule induction and
annotation process, so that they can focus on correcting rules and annotations
quickly. Experimental results show that iASA can reach high accuracy quickly.

1 Introduction

The Semantic Web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation
[4, 5]. In recent years, semantic web has made significant progress, in particular
through the development of infrastructure such as: ontology language like RDF and
OWL, ontology editor like Protégé, and reasoning engine like Racer.

In order to provide semantic web with ‘understandable’ data, it is necessary to
conduct annotation for at least two kinds of metadata. Specifically, commonly used
ontologies for semantic web need to be created; and existing web contents need to be
upgraded to semantic web content, i.e. semantic annotation. The later issue is exactly
the problem addressed in this paper.

* Supported by the National Natural Science Foundation of China under Grant No. 60443002.
** Corresponding author.

 iASA: Learning to Annotate the Semantic Web 111

Ontology

Speaker

Seminar

hasSpeaker

stime

etime

location

Start_time

end_time

Place_of_seminar

Semantic
annotation

Document

 Dates: 10-Apr-92
 Time: 4:00 PM- 6:00 PM
 PostedBy: F. Ted Tschang on 06-Apr-
92 at 23:10

<rdf:RDF>
…...
<seminar rdf:ID="Soup_Substance_Lecture">
…...
 <stime rdf:datatype="# dateTime">4:00 PM
</stime>
 <etime rdf:datatype="# dateTime">6:00 PM
</etime>
 </seminar >
…...
</rdf:RDF>

input

output

Fig. 1. An example of semantic annotation

Semantic annotation aims to markup the web pages by an ontology, which defines
the meaning of contents in the pages. Figure 1 shows an example of semantic
annotation. The inputs of semantic annotation are web document and ontology, the
output is the annotated result. In this example, the text “4:00 PM” and “6:00 PM” are
annotated as “stime” and “etime” respectively.

Many existing tools have semantic annotation features. However, most of them
support only manual annotation [26, 27]. Manual annotation is tedious, time
consuming and error-prone. More recent efforts make use of existing wrapping
method (e.g. Amilcare [9] and Rapier [7]) and disambiguation technology to automate
this process [1, 17, 24, 28, 42, 49]. In information extraction, many models are
proposed, such as: Hidden Markov Model [21, 44], Maximum Entropy Model [3, 8],
Support Vector Machines [13], and Conditional Random Field [32]. See section 8.4
for details. The methodologies proposed in the previous work can be used in semantic
annotation. However, they seem not sufficient for the task.

In this paper, we try to address semantic annotation in a new approach. In our
approach, the annotation mainly consists of two stages: learning and annotation.

In learning, we generalize the learned rules. For each rule, we define the extracted
text and its context text as features and assign a label. The label represents which type
of metadata the extracted text should be annotated. We use the labeled documents to
generalize the learned rule set in advance.

In annotation, we identify, extract, and annotate the string in given documents
using learned rules.

We propose a method called Similarity based Rule Learner (SRL) to generate the
rules. We utilize an empirical method to select the optimal dynamic window size for
the rule. We make use of machine learning techniques to improve the annotation
results by selecting the correct annotated instances and by predicting the missing
annotated instances. Finally, we provide a mechanism for explaining the nature of the
rule learner and annotator. The explanation can be very useful in system analysis both
for development and usage scenario.

We have developed a tool based on the approach that is call iASA. iASA is
targeting structured web data. In iASA, we learn the annotation rules by SRL, and

112 J. Tang et al.

apply the learned rules to un-annotated documents. We also make use of the
explanation to help users refine the learned rules or to correct the annotation results.

We conducted the experiments on two data sets, and performed the comparison
with existing methods. The experimental results indicate that the proposed method
performs well for semantic annotation. We applied the method in a practical project:
TIPSI. In TIPSI, we are aimed to extract the semi-structured information from
company annual reports for Stock Exchange. Both of the results of the analysis on a
user feedback and the result of an analysis on annotation results show that the features
in iASA are helpful. We are trying to apply the tool to Contact Search on internet.

The rest of the paper is organized as follows. In section 2, we give an overview of
the architecture of iASA and introduce the terminology and notations used throughout
the paper. In section 3, we describe our rule learning method: similarity based Rule
Learner (SRL). In section 4, we introduce the annotator. In section 5, we propose to
improve the annotation results by using machine learning methods and in section 6,
we provide a mechanism for explaining the nature of the rule learner and annotator.
Section 7 gives our experimental results. Finally, before making concluding marks,
we give the survey of related works.

2 iASA: An Automated Semantic Annotator

We perform semantic annotation in four main passes of procedures: learning,
annotation, refinement, and the explanation. These procedures correspond to the
following four components: SRL, Annotator, Annotation Improvement and
Explanation (as shown in figure 2).

SRL

Preprocessor

Select window size

evaluation

Similarity based
rule induction

Rule Pruning

Learned
rule set

Manual validation

Annotated
documents

(Training corpus)

Output the optimal
window size

E
xplanation

Interaction

Cross Validation

Learned
rule set

Annotator

Un-annotated
documents

Annotation by learned
rules

Prune using domain
knowledge

Annotated
documents

Domain
Ontology

E
xplanation

Annotation Improvement

Instances selection

Missing instance
completion

(a) Rule Learning (b) Annotator

Fig. 2. The architecture of iASA

 iASA: Learning to Annotate the Semantic Web 113

In Rule Learning, the input is the annotated documents. We preprocess the
annotated documents and construct an initial rule sets. We then use an empirical
method to find the optimal window size for each concept’s/property’s rules. Next, we
employ the similarity based rule induction on the initial rule set and obtain a set of
annotation rules. After the pruning procedure, the output is a learned rule set. On the
learned rule set, explanation component supports a user interaction, which helps the
user to refine the learned rule sets.

In Annotation, the input is un-annotated documents. We apply the learned rules to
the un-annotated documents and annotate them according to an ontology. The
ontology is defined to represent the annotated or un-annotated documents. After that,
we try to refine the annotation results by using machine learning techniques. The
output is the annotated documents (an example of annotated document is shown in
figure 9). In the procedure, the explanation component supports a user interaction to
help the user understand the annotation and the refinement process.

In the rest of this section, we will present the necessary terminologies and
definitions.

2.1 Terminology and Notation

The following terminologies are used throughout this paper.
For short, we use entity to denote concept and property in ontology hereafter. Let

E={ei|i [1,m]} be a set of entities, where m is the number of entities. In annotated
documents, the texts that are annotated as entity ei are called the instances of ei. An
instance’s content includes one or more words/phrases. Let i be an instance and let I
denote a set of instances. Notation },,,,,,{, 2211 ><><><>=<

ii ininiiiiii ciciciCI L

denotes a set of instance-occurring time pairs, in which Ii is the set of instances of ei
and ii1 is one possible value of the instance and ci1 is the corresponding occurring time
of the value in the instance set Ii. ni is the number of entity in Ii.

2.1.1 Token Definition

1. Token
In both Rule Learning and Annotator, the annotated and un-annotated documents are
split into a sequence of tokens {t0, t1, …, tn}. Each token can be a word (A word is a
set of contiguous upper or lowercase letters), a gazetteer entry (e.g. person’s first
name, currency unit, location, etc) or a name entity (e.g. organization, person’ name
and date, etc).

Each token is associated with linguistic attributes. Specifically, linguistic attributes
of word include: “kind”, “orth”, “type”, “pos”, and “name”; linguistic attributes of
gazetteer entry (lookup) include: “name” and “type”; and linguistic attribute of name
entity is its “name”. Table 1 shows the details of the three types of tokens and their
attributes. The columns respectively represent token, its attributes, description of the
attribute, example of the attribute’s value, and description of the example value.

2. Token similarity
According to the attributes of tokens, we define the similarity of two tokens as:

Token_S(it , '
jt)= ∑

k
jkikk aamatchw),(

114 J. Tang et al.

where aik and ajk respectively represent the k-th attribute vaule of token ti and ti
’.

Function match() is a zero-one function, which ends up with 1 when aik equals to ajk,
0 otherwise. wk is the weight of the k-th attribute. (In experiments, the weight of
attributes “name”, “pos”, “kind”, “type”, and “orth” for word are tentatively set as
0.45, 0.25, 0.1, 0.1, and 0.1, respectively; the weight of attributes “name” and “type”
for gazetteer are tentatively set as 0.7 and 0.3.)

Table 1. Details of the three types of tokens and their attributes

Token Attribute Comment Examples Value Description
Name Original string “Time”

“OneHyphen” Indicates the word is a
simple hyphen (“-” or “_”)

“AllCap” Indicates all letters in the
word are capitalized
(“CHINA”)

Orth
Orthography of the
word

“Capitalized” Indicates the first letter is
capitalized (“Time”)

“punctuation” Indicates the word is a
punctuation (“,” or “.”)

“word” Normal word (“Time”) Kind Kind of the word

“number” Indicates the word is
numeric (“486”)

“NN” Singular common noun
with word initial capital POS

Part-Of-Speech of the
word

“CD” Cardinal number (one, 100)
“Spacetoken” Indicates the word is a

enter or space

Word

Type
Indicate whether word
is a space token or not “Token” Other words except whose

type is “spacetoken”
person’s first
name

E.g. “Jeanne”

Organization E.g. “Motorola”
Name

Major type of the
gazetteer entry

Location E.g. “Oregon”
Female Minor type of person’s first

name
company Minor type of organization

(“Motorola”)

Lookup
(gazetteer

entry)

Type
Minor type of the
gazetteer entry

Province Minor type of location
(“Oregon”)

Organization Includes company or
governmental organization
(“Oracle”, “Intel”)

person’s name E.g. “Jeanne Heembrock”

Name
entity

Name
Recognized over the
original words.

date E.g. “17 Nov 1996”

 iASA: Learning to Annotate the Semantic Web 115

3. Pattern definition
A pattern is a sequence of tokens with length n (n could be zero). Formally, a pattern
can be written as:

},,,{ 10 ntttpattern L=

where ti is the i-th token in the pattern.
As the example in figure 1, the string “4:00 PM” is annotated as the property stime.

It can be viewed as a body pattern (defined in the following section) containing one
token: name entity “date” or a body pattern containing four word tokens: “4”, “:”,
“00”, and “PM”).

We also define similarity between the two patterns. See section 3.3 for details.

2.1.2 Rule Definition
Semantic annotator needs abstract patterns that are defined based on all the features
potentially helpful for the ontology annotation. These abstract patterns are defined as
rules. In iASA, the rule is represented in XML.

Each rule has an entity name and consists of three parts: 1) left pattern: it is used to
match the text that immediately precedes the instance (w tokens to the left); 2) body
pattern: it corresponds to the instance of an entity (tokens contained); 3) right pattern: it
is used to match the text that immediately follows the instance (w tokens to the right).

Figure 3 shows an example of a rule of entity etime. In the rule, Left, body and
right pattern are denoted by “leftpattern”, “bodypattern” and “rightpattern”,
respectively, and the token in these patterns is denoted by “tag”. The attribute
“indicator” of “tag” denotes the type of the token. The type can be name entity,
gazetteer entry (lookup), or word. Attributes “kind”, “name”, “orth”, “type”, and
“pos” represent the attributes of corresponding token (as shown in table 1). We use
“<tag indicator=“unknown”/>” to denote a placeholder.

<rule name="etime" no="12">
 <leftpattern>
 <tag indicator="word" kind="word" name="Time" orth="O: Capitalized" type="token" />
 <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" />
 <tag indicator="unknown" />
 <tag indicator="word" kind="punctuation" name="-" orth="O: OneHyphen" pos=":" type="token" />
 </leftpattern>
 <bodypattern>
 <tag indicator="nameentity" name="date" />
 </bodypattern>
 <rightpattern>
 <tag indicator="word" name="" type="spacetoken" />
 <tag indicator="word" kind="word" orth="O: Capitalized" type="token" />
 <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" />
 </rightpattern>
</rule>

Fig. 3. An example of rule

In order to learn the target rules, the user typically needs to provide a set of
annotated documents (also called training documents). In the training documents, we
label a set of training instances in advance. Each instance is enclosed by a start tag
(e.g. <stime rdf:datatype="http://www.w3.org/2001/XMLSchema#string">) and an

116 J. Tang et al.

end tag (e.g. </stime>). Context of annotated instance (viz. leftpattern, bodypattern
and rightpattern) is constructed according to the start and end tags. Specifically, the
text that enclosed by a pair of tags is viewed as an instance and is transformed into a
bodypattern; w tokens that precedes the instance are transformed into leftpattern; and
w tokens that follows the instance are transformed into rightpattern.

3 SRL—Similarity Based Rule Learner

SRL has four main modules: preprocessor, rule set initialization, rule induction, and
rule set pruning. The input is annotated documents. Preprocessor exploits Natural
Language Processing (NLP) techniques to process the documents. Rule set
initialization takes the preprocessed corpus as input and generates the initial rule set
using dynamic window size based context. Rule induction performs rule
generalization in an iterative mode. In each iteration, we select pairs of rules with
high similarity in the initial rule set according to the rule similarity (see section 3.3 for
definition of rule similarity), generalize new rules, evaluate each new rule, and then
insert the new rule into the learned rule set if it survives the pruning phrase. Finally,
SRL outputs the learned rule set.

3.1 Preprocessor

In preprocessing, we use NLP techniques to process the document, which has been
proved to be useful for machine learning and information processing [7, 9]. NLP
associates additional knowledge to each word in the document.

We make use of GATE as the NLP toolkit [14]. GATE is a general toolkit for text
processing. It integrates many tools for NLP, including morphological analyzer, a POS
tagger, gazetteer lookup, and named entity recognition (recognition of person name,
dates, number and organization names, etc). For example, in the document snippet: “…;
Patrick Stroh, assistant professor, SDS…”, “Patrick Stroh” is annotated as an instance of
entity speaker. After processing by GATE, each word is associated with linguistic
knowledge: part of speech (POS), token kind (Kind), lookup, and name entity, etc.
Table 2 gives an example about how GATE provides the linguistic knowledge.

Table 2. An example of preprocessed result with NLP knowledge

Instance with NLP Knowledge

Word POS Kind Lookup Name Entity
Annotated

as

; : Punctuation

Patrick NNP Word Person’s first name

Stroh NNP Word
Person Speaker

, , Punctuation

assistant NN Word Jobtitle

professor NN Word

, , Punctuation

SDS NNP Word

 iASA: Learning to Annotate the Semantic Web 117

The linguistic knowledge seems very useful in rule induction. For example, tags in
the rule can be relaxed by substituting constraints on words by constraints on some parts
of the linguistic knowledge. In this way, we can generalize the rules by name entity (e.g.
“person’s first name (male)”) or POS (e.g. “NNP”) instead of only flat words.

3.2 Rule Set Initialization

For rule induction, we first need to construct the initial rule set that contains the
mostly specified rules. In annotated documents, each instance is enclosed by a start
tag and an end tag. We transform the instance and its context in the preprocessed
document into an initial rule. Existing methods usually define a window of fixed size
(size=w) as the instance context and build the initial rule by using w tokens to the left
and w tokens to the right for a given annotated instance.

In the rule set initialization, we exploit the linguistic attributes, and we also use the
dynamic window size by an empirical method.

1. Linguistic knowledge based context
Suppose w is “3”, for the annotated instance of stime in figure 1, table 3 gives a
comparison of linguistic knowledge based context and word based context. The
second column represents the linguistic knowledge based context and the third
column represents the flat word based context.

Table 3. Linguistic knowledge based context vs. word based context

Initial Rule Linguistic Context Words’ Context Semantic Entity

Date (name entity) “10-Apr-92”

“Time” (word) “Time” Left Pattern

“:” (punctuation) “:”

Body Pattern Date (name entity) 4:00 PM stime

“-” (word) “-” (word)

Date (name entity) “6:00 PM” (word) Right Pattern

Return Return

In table 3, we see that by the comparison of the word based context, the linguistic
knowledge based context substitutes a name entity ‘Date’ for both ‘10-Apr-92’ and
‘6:00 PM’. The linguistic knowledge based context seems more reasonable, because
the rules derived from it intuitively can be applied to broader cases.

2. Optimal dynamic window size based context
Analysis on our preliminary experimental results shows that different entities prefer to
contexts with different window sizes. For example, in the task of annotating CMU
Seminar announcements, with the increase of window size (tested from 2 to 8), the
performance (evaluated by F-measure) for entity etime becomes better; however for
entity stime, the performance becomes worse.

We perform the window size selection for each entity by using cross-validation, a
typical approach for experimental selection [43]. Cross validation is a commonly used
technique in machine learning to prevent bias. The main idea is based on the

118 J. Tang et al.

following assumption: if the rules learned from a subset of the training data produce
accurate result, it is also likely that it will produce highly accurate predictions when
trained on the entire dataset.

In this method, to determine w for each entity, we evaluate the performance on
training corpus with contexts of different window sizes using cross-validation.
Specifically, let T be the training corpus. The examples in T are first randomly
divided into d equal parts T1, T2, , Td (we use d = 10 in our experiments). Next, for
each part Ti, i [1,d], we try to learn the rules from the other (d-1) parts, then apply
the learned rules to the examples in Ti. Finally, we select the window size that
performs best for each entity. Section 7 will show the comparison of dynamic window
size and fixed one.

3.3 Rule Induction

The input of rule induction is an initial rule set, rule induction aims to learn rules over
the initial rule set and to output a learned rule set.

Within rule induction, the following problems should be considered:

 Tokens in body patterns may be very sparse, which make it difficult for
generalization. For example: instances of address: “Baker Hall 237B”, “room
1001”, “WeH 5403”, etc.

 Sometimes token in the rule may be only a placeholder instead of a meaning
ones, e.g. in examples: “the speaker is <speaker>”, “the speaker: <speaker>”,
and “the speaker, <speaker>”. A placeholder can be defined so as to match
“is”, “:” and “,”.

 Each learned rule should be scored. The higher the score is, the higher
probability that the rule is accepted in the final rule set.

In regular expression language, “*” usually is exploited to represent any group of
characters and “?” usually is exploited to represent any character. In our rule
definition, we extend this idea slightly and make use of “*” and “?” to respectively
represent any group of tokens and any token. In this way, for the first problem, we use
“*” to represent the body pattern and for the second problem, we use “?” to represent
the placeholder.

Unfortunately, most of the existing rule induction methods do not have the feature
of generalizing the wildcard “*” and “?”. In this section, we introduce how SRL
solves these two problems. Moreover, we describe the evaluation metric that is used
to score each learned rule.

1. Rule similarity
Rule similarity is the basic idea in SRL. SRL runs in an iterative mode. In each
iteration, we always try to select the most similar pair of rules for generalization.
Califf et al adopt a random strategy for the rule selection [7]. The similarity based
selection method seems more reasonable. There are two reasons for this: similarity
based method is more efficient than random method by avoiding the pseudo
generalization and the learned rules by the random method may be inconsistent.

We then need to define the similarity of a pair of rules. Typically, a rule can have
three patterns (see section 2.1.2 for the definition). We calculate the similarities of the

 iASA: Learning to Annotate the Semantic Web 119

three corresponding patterns and sum them into an aggregate one. But soon, we found
that there are mainly two kinds of rules: rules with sparse body patterns and rules with
non-sparse body patterns. Examples of the former include rules of entity speaker;
examples of the later include rules of entity platform or entity database.

Our proposal is that similarity of rules with sparse body patterns are calculated by
the similarities of corresponding left patterns and right patterns, and similarity of rules
with non-sparse body patterns includes only the similarity of body patterns. We,
therefore, define rule similarity as:

⎩
⎨
⎧

≤
>+

=
μ

μ
)(,),(

)(,),(),(
),(

21

2121
21 bpsparsebpbpsim

bpsparserprpsimlplpsim
rrsim

where r1 and r2 are two rules. sim(lp1, lp2), sim(bp1, bp2), and sim(rp1, rp2)
respectively represent the similarities of corresponding left patterns, right patterns,
and body patterns in rules r1 and r2. sparse(bp) is a measurement indicating whether
the body pattern is sparse or not. It is calculated by count(value)/count(instance).
count(value) is the number of instance values for the given entity, and count(instance)
is the total number of instances (e.g. “4:00 PM” and “4:00 PM” are two instances of
etime with only one value). Parameter μ is a threshold (we tentatively set it as 0.5).

2. Pattern similarity
We calculate the similarity of patterns by a recursive procedure called Multiple Layer
Recursive Matching (MLRM) algorithm. This idea is derived from [46].

In MLRM algorithm, the input is two patterns: pattern1 and pattern2. Output is the
similarity score of the two patterns.

The MLRM algorithm is described in Figure 4.

Input: pattern1[t0,t1,…,tn]
 pattern2[t0’,t1’,…,tm’];
Output: Seq_S(pattern1,pattern2); //pattern similarity
MLRM(pattern1[t0,t1,…,tn], pattern2[t0’,t1’,…,tm’])
{
 if(either pattern1 or pattern2 is empty or no more higher layer)
 return 0;
 A=0;B=0;
 while(A<=n and B<=m)
 {
 for(i from A to n)
 for(j from B to m)
 select the most similar token pair : argmax(Token_S (ti, tj’));
 {
 Seq_S(pattern1,pattern2) += Token_S (ti, tj’) * weightk;
 Seq_S(pattern1,pattern2) += MLRM(pattern1[tA,…,ti-1],
 pattern2[tB’,…,tj-1’]);
 A=i+1; B=j+1; break to while;
 }
 }
 Seq_S(pattern1, pattern2) += MLRM(pattern1[tA,…,tn],
 pattern2[tB’,…,tm’]);
 return Seq_S(pattern1, pattern2);
}

Fig. 4. The MLRM algorithm

120 J. Tang et al.

MLRM uses the function MLRM() for estimating the similarity between two
patterns. Token_S(ti, ti

’) calculates the similarity between token ti and ti
’ using their

linguistic information (token similarity is defined in section 2). Seq_S is the similarity
of the two patterns by aggregating the similarities of individual pairs of tokens.
MLRM recursively computes similarity between two patterns at multiple layers with
different similarity weights (weightk). MLRM attempts to find a pair of the most
similar tokens from pattern1 and pattern2. In each layer, the pair of tokens essentially
divides each pattern into two sub-patterns. MLRM continues the process until one of
the sub-patterns becomes empty. The weight at each layer is currently empirically
assigned to reflect the relative importance of the token similarity in that layer. We
tentatively set the weights w1, w2, w3, and w4 as 10, 9, 8 and 7 respectively.

Figure 5 illustrates MLRM with an example. At step 0, a pair of the most similar
tokens is found (connected by a dark line) and divides each pattern into two sub-
patterns. Each pair of sub-patterns is recursively processed by MLRM as indicated in
step 1. In this step, two additional similarity pairs are found and the two patterns are
further divided into four sub-patterns to be processed recursively at step 2. MLRM
stops when no more nodes are left in the sub-patterns.

Step 0

Step 1

Step 2

t1 t2 t3 t4 t5

t1' t2' t3' t4' t5' t6'

t1' t2' t3' t4' t5' t6'

pattern1

pattern2

pattern1

pattern2

pattern1

pattern2

Fig. 5. An example of recursive matching in MLRM

3. Rule generalization
The task of rule generalization is to induce new rules from the pair of similar rules.
The new rules should cover the pair of rules.

In rule generalization, we take a strategy of divide-and-conquer. For a pair of
similar rules, our method is to generalize the three pairs of patterns (i.e. left patterns,
body patterns, and right patterns), and then combine the generalized patterns into a
new rule. For each pair of patterns, the generalization is performed by starting from
constrains of all linguistic information on tokens to some relaxation. The algorithm of
rule generalization is shown in figure 6.

In rule generalization, we first select the most similar rules by getSimilarRules().
The number of selected rules is not necessary two. Hence the algorithm calls function

 iASA: Learning to Annotate the Semantic Web 121

getRealPairs() to generate pairs of rules. Then, for each pair of rules, the algorithm
uses generalizePatterns() to generalize left pattern, body pattern, and right pattern
respectively. generalizePatterns() returns a collection of possible induced patterns for
the two input patterns (note: for two patterns, there might induce multiple patterns
with different linguistic information). Function getAllPossibleRules() returns all
possible rules by combining the three collections of patterns. For each rule, algorithm
evaluates it both on the initial rule set and on the original training corpus, and then
adds it to the learned rule set if its score exceeds the minimal rule score (a threshold
predefined). (For the detail of rule evaluation, please refer to the following section.)

RuleInduction(RuleSet ruleset)
{
 rssimilar=getSimilarRules(ruleset);
 collect_RP=getRealPairs(rssimilar);
 foreach rulepair in collect_RP
 {
 rule1 and rule2 in rulepair
 col_leftpat=generalizePatterns(rule1.leftpattern, rule2.leftpattern);
 col_bodypat=generalizePatterns(rule1.bodypattern, rule2.bodypattern);
 col_rightpat=generalizePatterns(rule1.rightpattern, rule2.rightypattern);
 col_rules=getAllPossibleRules(col_leftpat,col_bodypat,col_rightpat);
 foreach rule in col_rules
 {
 score=EvaluateRule(rule);
 if(score > minRuleScore)
 col_learnedrules.add(rule);
 }
 }
 return col_learnedrules;
}

generalizePatterns (Pattern pattern1, Pattern pattern2)
{
 if(pattern1==null or pattern2==null)
 return null;
 relaxlevel = 0;
 while(true)
 {
 collectpair = getMatchedTagPair(pattern1,pattern2, relaxlevel);
 newpattern = getPattern(pattern1, pattern2, collectpair);
 pattern_collection.add(newpattern);
 relaxlevel++;
 if(relaxlevel>maxrelax)
 break;
 }
 return pattern_collection;
}

(a) Generalization of rules (b) Generalization of patterns

Fig. 6. The algorithm of rules generalization

In pattern generalization, generalizePatterns() searches for the matchable pairs of
tokens (by function getMatchedTagPair()). The search starts from full constraints
(relaxlevel=0) to maximum relaxation on linguistic information (relaxlevel=
maxrelax-1). In the case of full constraints, two tokens are considered to be matched
only when all of their attributes are equal, including “indicator”, “kind”, “name”,
“orth”, “pos”, and “type” (see table 1 for details). With the increase of relaxlevel, the
matcher relaxes the condition by the order of “name”, “pos”, “kind”. By relaxing the
condition, we mean ignoring the corresponding attributes in the matching process.
Parameter maxrelax is the stop condition to control the relaxation progress. The
discovered matchable token pairs are used as the initial points to generalize the
pattern. The function getPattern() returns the generalized results of the two patterns
based on their matchable token pairs. Figure 7 gives an example to illustrate the
strategy used in getPattern().

In this example, t2-t2’, t3-t4’ and t5-t5’ (linked by dark line) are three matchable
token pairs returned by function getMatchedTagPair(). The three pairs of tokens
divide the two patterns into four token groups: (t1-t1’), (t3’), (t4) and (t6’). For each
token group, tokens in the two patterns are induced one by one from left to right for
body pattern and right pattern or from right to left for left pattern. As for uneven
length, such as (t3’), (t4) and (t6’), the algorithm adds wildcard “?” to the remainder
tokens. Symbol C(t1,t1’) means the induction of two tokens: t1 and t1’. “(t3’)?”
indicates that the token t3’ can either occur or absent in the target cases.

122 J. Tang et al.

RuleInduction() is run iteratively until the stop condition is met. The stop condition
is that no more general rules can be induced. Finally, rule generalization outputs the
learned rule set.

t1 t2 t3 t4 t5

t1' t2' t3' t4' t5' t6'

(t3')? C(t4,t4')C(t1,t1') C(t2,t2') (t4)? C(t5,t5') (t6)?

Pattern 1

Pattern 2

Generalized
pattern

Fig. 7. An example to describe how two patterns are generalized in getPattern()

4. Rule evaluation
Each rule is scored by the function Evaluation() (shown in figure 6(a)). The score is
the combination of two factors: score on the initial rule set and score on the original
training corpus. Both scores are evaluated by F-measure. F-measure is defined as:

where precision is the percentage of correctly annotated instances in the annotated
instances; recall is the percentage of correctly annotated instances in the correct
instances. Parameter indicates the degree of preference on precision/recall.

We call the score on the initial rule set as rulescore. We take the annotated
instances of current entity as positive examples and instances of the other entity as
negative ones. Score of each rule is evaluated by F-measure on the initial rule set. The
metric rulescore should concern more precision than recall, because the generalized
rule may only cover the two source rules after the first iteration, which leads to a very
low recall. On the other hand, low precision indicates that the new rule covers
negative examples. Therefore we set the weight as 16.

We call the score on original training corpus as realscore. We apply the learned
rule on the original training corpus (i.e. take training corpus set as test data), which
can avoid over-learned rules to a certain extent. The over-learned rules may produce
good result on the initial rule set, but they can also import noise. Such noise may lead
to low precision. For calculating realscore, we set the parameter β as 1.

Finally, by multiplying rulescore by realscore, we obtain the final score of the new
rule.

recallprecision

F
1

1

 iASA: Learning to Annotate the Semantic Web 123

3.4 Rule Set Pruning

In rule set pruning, we aim to remove the redundant and unreliable rules in the
learned rule set.

To remove redundant rules, it is necessary to define what a redundant rule is. We
give the definition of redundant rule.

Redundant Rule: If a rule is covered by other rule(s) in the rule set, then this rule is
redundant. In other words, if all instances that annotated by this rule can also be
annotated by other rule(s), then this rule is a redundant rule.

In terms of the definition, we developed methods to judge whether a rule is
redundant. Our methods include two steps: (1) judging whether a rule is covered by
another rule; (2) judging whether a rule is covered by other rules. We exploit the
annotated instances to judge whether a rule is covered by other rules.

Whether or not a rule is covered by another rule is based on the observation: if
every pattern of a rule is more general than the corresponding pattern of another rule,
we say that the latter rule is covered by the former rule.

Figure 8 gives an example. In the example, pattern 2 is covered by pattern 1
because token (<tag type=“”>) of pattern 1 is more general than token (<tag
type=“token”>). <tag type=“”> denotes a token that can be any type.

Pattern 1
<pattern>
 <tag type="" >
</pattern>

Pattern 2
<pattern>
 <tag type="word" >
</pattern>

Fig. 8. An example of two patterns

We exploit the annotated instances to determine whether a rule is covered by other
rules: if instances annotated by a rule can be also annotated by some other rules, we
say that the rule is a redundant rule.

To remove unreliable rules, we make use of ontology knowledge. We use entity
type to infer whether the rule is reliable or not. For example, in the seminar ontology
the property stime is defined as:

<owl:DatatypeProperty rdf:ID="stime">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime" />
 <rdfs:domain rdf:resource="# seminar " />
</owl:DatatypeProperty>

Then we use the date type dateTime to judge whether the body pattern of a rule
conforms to it or not. After pruning, SRL outputs the final learned rule set.

4 Annotator

Annotator takes the un-annotated documents as input, preprocesses them by NLP
which is the same as that in SRL, applies the learned rules on them, and annotates the
documents according to an ontology.

124 J. Tang et al.

An example of output by the annotator is shown in figure 9. The format conforms
to the ontology standard language OWL DL [15], which can facilitate further
reasoning process.

Using iASA in the experiments, we have found that domain knowledge can greatly
improve the accuracy of annotation. Domain knowledge can be used to evaluate
annotations and prune wrong annotations, and it is also helpful for directing the
search process. In semantic annotation, domain knowledge is usually represented by
ontology. We then use the restrictions in the ontology for improving the annotation.

<rdf:RDF>
 <seminar rdf:ID="Soup_Substance_Lecture">
 <location rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Wherrett Room, Skibo</location>
 <stime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">12:00 PM</stime>
 <etime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">1:00 PM</etime>
 <hasSpeaker rdf:resource="#Erik_Devereux" />
 <speaker rdf:ID="Erik_Devereux">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Erik Devereux</name>
 </speaker >
 </hasSpeaker >
 <hasSpeaker >
 <speaker rdf:ID="Patrick_Stroh">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Patrick Stroh</name>
 </speaker >
 </hasSpeaker >
 <hasSpeaker rdf:resource="#Richard_Smith" />
 <speaker rdf:ID="Richard_Smith">
 <name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Richard Smith</name>
 </speaker >
 </hasSpeaker >
 </seminar >
</rdf:RDF>

Fig. 9. An example output of annotator

Domain Restriction: The constraints that are defined in the ontology include “date
type”, “cardinality”, “minCardinality”, etc. Table 4 shows examples of domain
restrictions currently used in iASA.

Table 4. Examples of domain restrictions that are exploited to improve the annotation

Constraint
Types

Examples

date type
If the data type of annotated instance does not match the data type of entity
x in ontology, then remove the instance.

If cardinality of entity x is 1, and annotator finds multiple candidate
instances, then select the candidate annotated by the best rule (with highest
score) as the instance of entity x.

Cardinality
If cardinality of entity x is 1, and annotator doesn’t find any candidates,
then relax the condition in the rule and search the document again (the
relaxation strategy is same as that in rule induction).

 iASA: Learning to Annotate the Semantic Web 125

5 Improving the Annotation by Machine Learning Methods

In annotation, we met two problems: correct instances selection and missing instances
prediction. In this section, we try to make use of machine learning methods to solve
the two problems.

5.1 Problem Statement

Now we give the definitions of the two problems.

(1) Correct instance selection. In automatic annotation, entity may be annotated
with multiple instances even in one document. Some annotated instances are
correct, but some may be wrong. The problem is how to identify the correct
instances.

(2) Missing instance prediction. There may be some instances that are not
annotated by automatic annotation, we call it missing instances. Since typically
recall of semantic annotation is significantly lower than its precision, it is
indeed necessary to deal with the problem.

In existing methods for correct instances selection, Califf et al propose to select the
instance(s) that annotated by the highest scored rule [7]. The method can solve some
problems, but it is not sufficient, because: (a) even the same rule might annotate
multiple instances including both correct and erroneous ones; (b) some correct
instances can be annotated by the other rules instead of the highest scored rule.

In existing methods for missing instance prediction, Nahm et al propose to induce
predictive rules which are then used to predict the missing instances [39]. The method
mines the association rules from the data. For example, suppose following rule is
discovered from data on entity program language and topic area:
“SQL” language “Database” area If the annotation system annotated only
“SQL” for language, but failed to annotate “Database” for area, then the method can
assign the “Database” as the value of area.

In this paper, we formalize the correct instance selection problem as that of
classification. When selecting the correct instances, we use a classification model to
identify whether or not an instance is correct.

For missing instance prediction, it is difficult to accurately predict the missing
instances that have random values, even by human. We confine ourselves to predict
the instances that have enumerative values in missing instance prediction. It seems
reasonable for predicting instances that have enumerative values, because we have
observed that 17.4% of the entities have enumerative values in our experimental data.

We then formalize the missing instance prediction problem as that of multi-class
classification. When predicting a missing instance, we use a classification model to
predict which value has the highest probability as the missing instance. The
classification model is trained using the training data in advance.

5.2 Classification Model

We make use of SVM (Support Vector Machines) as the classification model [47].
Let us first consider a two class classification problem. Let {(x1, y1), … , (xN, yN)}

be a training data set, in which xi denotes an instance (a feature vector) and yi {-

126 J. Tang et al.

1,+1} denotes a classification label. In learning, one attempts to find an optimal
separating hyper-plane that maximally separates the two classes of training instances
(more precisely, maximizes the margin between the two classes of instances). The
hyper-plane corresponds to a classifier (linear SVM). It is theoretically guaranteed
that the linear classifier obtained in this way has small generalization errors. Linear
SVM can be further extended into non-linear SVMs by using kernel functions such as
Gaussian and polynomial kernels.

We choose polynomial kernel, because our preliminary experimental results show
that it works best for our current task. When there are more than two classes, we
adopt the “one class versus all others” approach, i.e., take one class as positive and the
other classes as negative.

Now, we have two kinds of “instances”: annotated instance of an entity and
instance in SVM model. To distinguish them from each other, we use sample to
denote instance in SVM hereafter.

5.3 Correct Instance Selection

We divide the problem of instance selection into three categories:

(1) Multiple instances are annotated by the same rule. For example, “a MIS
Manager” and “MIS Manager” might be annotated as “title” by a same rule.
(The two examples are instances of entity “title” in the task of misc.job.offered.
Correct one should be “MIS Manager”.)

(2) Multiple instances are annotated by different rules. For example, “Marian D’
Amico”, “Charles E. Leiserson”, and “Jeffrey V. Hill” may be annotated as
“speaker” by different rules. (The three examples are instances of entity
“speaker” in CMU seminar announcement. Correct one should be “Charles E.
Leiserson”.)

(3) Hybrid of the two situations. For example, “Leiserson”, “Charles E. Leiserson”,
and “to Charles” may be annotated as “speaker”, in which “Leiserson” and
“Charles E. Leiserson” are annotated by a same rule, and “to Charles” is
annotated by another rule. (The three examples are instances of entity
“speaker” in CMU seminar announcement. Correct one should be “Charles E.
Leiserson”).

The method of selecting by highest scored rule can only deal with the problem of
the second category, and will fail on the other two categories. Even on the second
category, the method may fail when the correct instance is annotated by a lower
scored rule.

We view the instance selection problem as that of classification. The correct
instance selection consists of two stages: training and identification.

In identification, when problem of multiple instances occurs, we identify whether
or not each instance is correct using SVM model. Then we rank the instances by
scores output by SVM. We select the instance ranked top as the correct one.

In training, we construct the SVM model that can be used to identify the instance.
In the SVM model, we view an instance as a sample in SVM. For each sample, we
define a set of features and assign a label. The label represents whether the instance is
correct or not. For each entity, we use instances of the entity in the annotated

 iASA: Learning to Annotate the Semantic Web 127

documents as positive samples for SVM and the others as negative samples. We use
the labeled samples to train the SVM model in advance for each entity.

We view each instance as a ‘document’, and convert the ‘document’ into a bag of
words. We apply stop-word filtering and word stemming on the bag of words. After
that, we construct an attribute-value representation of the ‘document’. Each distinct
word wi corresponds to a feature with its value. For the feature value, we use TF(wi,
x)*IDF(wi), a typical method to estimate the word weight in that document. TF(wi, x)
represents the frequency of word wi occurs in the document x. IDF(wi) represents the
inverse document frequency of a word. It is defined by:

)(
log)(

i
i wDF

n
wIDF =

here n is the total number of instances. DF(wi) is the number of documents the
word wi occurs in.

Finally, for multiple instances, we obtain a ranked list, and then we do the selection
according to the following rules:

(1) For entity whose cardinality is unique, the top ranked instance is selected as the
correct one.

(2) For entity whose cardinality a is greater than 1, the a top ranked instances that
do not overlap with each other are selected as correct ones. No overlap is very
important. Considering the examples above, instances “a MIS Manager” and
“MIS Manager” might both obtain a higher scores compared to other instances.
No overlap rule can further remove “a MIS Manager”.

(3) For entity whose cardinality is multiple, instances that are classified as positive
samples and do not overlap with each other are selected as correct ones.

5.4 Missing Instance Prediction

In missing instance prediction, we aim to predict the missing instances that have
enumerative values (we judge whether an entity has enumerative values in terms of its
definition in ontology). We view the problem of missing instance prediction as that of
multi-class classification. Here, values of the missing instances correspond to the
classes in the classification. It also consists of two stages: training and prediction.

In prediction, we predict the missing instances by using the extracted instances.
Specifically, for an entity with enumerative value type, we view the annotated
document as a sample in SVM, and then predict the value which the entity should
have. We use the value that has the highest score output by SVM as the missing
instance.

In training, we construct the SVM models that can be used to predict the value. In
SVM model, for an enumerative valued entity, we view each annotated document as a
sample. For each sample, we define a set of features and assign a label. The label
represents all possible values of the entity. For each label of an entity, we use the
annotated documents with this label as the positive samples for SVM and the others
as negative samples. We use the labeled samples to train the SVM models in advance
for each enumerative valued entity.

To represent the features for each sample, we view each annotated document as a
sample. For an annotated document, we first extract all the annotated instances from

128 J. Tang et al.

the annotated document. Next, the instances are converted into a bag of words. After
that we use the same method as that in the correct instance selection to prepare the
attribute-value representation for each sample.

Finally, for a missing instance of the enumerative valued entity, we obtain scores
from SVM for each possible value. We complete the missing instances by the
following rules:

(1) For entity whose cardinality is unique, the value with the highest score is
selected as the missing instance.

(2) For entity whose cardinality a is greater than 1, a values that have higher scores
are selected as the missing instances.

(3) For entity whose cardinality is multiple, only the value with the highest score is
selected as the missing instance.

6 Explanation

In iASA, we try to provide an environment for user to quickly annotate the web pages
according to an ontology. Practically, the user needs to inspect the learned rules and
the annotation results produced by the system, modify them and provide feedbacks to
the system.

As an annotation system relies on complex algorithms, there is a requirement for
the system to explain the nature of the generated rules to the user. This idea is derived
from [16]. Explanations can greatly help user gain insights into the rule induction and
annotation process. In this way, the user can easily focus on the correct rules and the
annotation results.

Figure 10 is an example of the scenario. It gives a learned rule for entity etime by
iASA.

This rule produces well accepted results on training corpus but low recall on the
test corpus. The user is uncertain about how to improve this rule or whether or not the
rule should be removed from the rule set. He wants iASA to explain how the rule is
generalized and how this rule is evaluated.

<rule name="etime" no="12">
 <leftpattern>
 <tag indicator="word" kind="word" name="Time" orth="O: Capitalized" type="token" />
 <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" />
 <tag indicator="unknown" />
 <tag indicator="word" kind="punctuation" name="-" orth="O: OneHyphen" pos=":" type="token" />
 </leftpattern>
 <bodypattern>
 <tag indicator="nameentity" name="date" />
 </bodypattern>
 <rightpattern>
 <tag indicator="word" name="" type="spacetoken" />
 <tag indicator="word" kind="word" orth="O: Capitalized" type="token" />
 <tag indicator="word" kind="punctuation" name=":" orth="O: OtherPunct" pos=":" type="token" />
 </rightpattern>
</rule>

Fig. 10. An example rule

 iASA: Learning to Annotate the Semantic Web 129

iASA induces rules from three initial rules and also shows how the tokens are
generalized. For example, the third token in Figure 10 (<tag indicator=“unknown”/>
indicates a placeholder) in the left pattern of the rule is generalized from the tokens: a
name entity (date: “Jan, 15th, 2004”), a word (“12”) and a gazetteer entry (also called
lookup) (time: “4:30”). This rule is tested on the initial rule set by score: 0.987 and on
training corpus by score 0.87. The final score is 0.86, which is higher than the
minimum rule threshold.

In the rest of this section, we will describe the data structure in explanation module
and introduce what kinds of questions can be answered in the explanation.

6.1 Data Structure in Explanation

The key data structure underlying the explanation component of iASA is the
dependency graph, which is constructed during the inducing process and the
annotation process. The dependency graph records the flows of induction, data, and
input and output of each system component. The nodes of the graph are: annotated
documents, initial rules, similar rules, selected similar rule pairs, generalized pattern
collections, all possible rules by the three generalized patterns, scores on the initial
rule set and the training corpus.

Two nodes in the graph are connected by a directed edge if one of them is the
successor of the other in the induction process. The label of the edge is the system
process.

In explanation, we define an abstract node, which can be written as a tuple:

Abstract_Node=<super_edges, node_type, node_data, sub_edges>

The four elements in the tuple respectively represent a set of link-in edges, type of
current node, data stored in the node, and a set of link-out edges. By link-in edge, we
mean the directed edge that one predecessor of the current node links to the current
node. By link-out edge, we mean the directed edge that the current node links to one
successor. The type of current node can be one of rule, rule pair, pattern, tag, and
annotated instance. The data corresponding to the node_type is stored in node_data.

We also define an abstract edge, which can be written as a tuple:

Abstract_Edge=<subject_node, edge_type, edge_data, object_node>

The four elements in the tuple respectively represent a subject node, type of the
edge, data stored in the edge, and an object node. By subject node, we mean a node
that the directed edge comes from. By object node, we mean a node that the edge
directed to. The type of current edge can be one kind of processes in iASA, e.g. rule
similarity computing, similar rule selection, rule induction, pattern generalization, rule
scoring on initial rule sets, rule scoring on original training corpus, annotation, etc.
The data corresponding to the type of the edge is stored in edge_data.

We make implementations for the nodes and the edges. In the implementation of
each type of node, we extend the abstract node and define the corresponding data
structure for storing information that is required in the explanation. In the
implementation of each type of edge, we extend the abstract edge and define the
corresponding data structure.

130 J. Tang et al.

We take rule-node (implementation of node for rule) as the example to describe
how we define the data structure for explanation. A rule has three patterns: left
pattern, body pattern, and right pattern. The rule links to the three patterns by three
link-out edges. A rule has three scores: score on initial rule set, score on original
training corpus, and the final score. The three scores are defined as attributes in the
rule-node. A rule has a semantic tag indicating which entity the rule is used to
annotate. The semantic tag is also defined as an attribute. A rule has an attribute
“number-of-covered-instance” indicating how many instances the rule can annotate in
the training documents. Moreover, a rule has a global unique ID. Through link-in
edges, a rule can have a set of predecessor. We can find one kind of predecessor by
looking up the corresponding edge type in the set of edges. For example, if we want
to find the pair of rules that are used to directly generalize into the current rule, we
can lookup the link-in edges by “rule induction”, the system returns a sub set of
edges. We next query the subject nodes of the returned edges and can get the pair of
rules. Traversing up in this way, we can get all rules that are used to generalize the
current rule.

Initial rule set

Similar rules (r1,r2,r3,r4...)

Rule induction

Similar rule pair (r1,r2)

All possible rules(r1',r2'...)

Generalized left
patterns(col1)

Generalized body
patterns(col2)

Generalized right
pattern(col3)

Score on initial rule
set=0.987

Score on original
training corpus=0.987

Final score=0.86>min
rule score=0.8

Accepted new rule(ri')

Loop until
no new rule

can be
generalized

Evaluate each new rule ri'

Multiply two score

Generate all possible rules

Generate each pattern

Select a rule pair

Prune the learned rule

Fig. 11. An example snippet of dependency graph recorded in iASA

 iASA: Learning to Annotate the Semantic Web 131

Figure 11 shows a dependency graph fragment that records the generalization of a
new rule. This procedure is the visualization of rule induction to give the user an
insight look of the rule induction. SRL firstly uses MLRM algorithm to search for the
most similar rules (r1, r2, r3, r4), and obtains a rule pair (r1,r2) for induction. Then,
the rule generalization induces left patterns, body patterns and right patterns
respectively. Each generalization returns a collection of possible patterns. After that,
SRL combines the three pattern collections, and generates all possible rules. Next,
SRL evaluates each rule on the initial rule set and the training corpus, and obtains the
scores. For rule r1’, the scores are 0.987 and 0.87 respectively. The final score 0.86
exceed the threshold. Therefore, SRL add the new rule (r1’) into the learned rule set.

The dependency graph is constructed while the system is running. Each of the
components contributes nodes and edges during the execution of the system. When
the system generates rules or annotates new documents, the dependency graph is
created at the same time.

6.2 Answer the Questions

In principle, a user may ask iASA many questions of following categories:

(1) Explain existing rule: “why is a rule induced as the final rule?” In essence, the
user wants to know how it was induced and survived from the evaluation and
pruning process.

(2) Explain absent rule: this is to answer the question: “Why is a certain rule not
present in the output?”

(3) Explain rule score: “why is rule x scored higher than rule y in the output?”. For
such question, iASA gives the details of the two scores (i.e. rulescore and
realscore), including their coverage, error count, missing count, precision,
recall and F-measure. The score is the key point in deciding where the rule
should be put in the output.

(4) Explain annotation: “which rule is an instance annotated by?” For a wrong
annotation, the user wants to know which rule brings out the error. He wants to
know the reason so as to modify the rule.

We now briefly describe how iASA generates explanations for the four kinds of
predefined queries described above.

To answer the question “why is rule x present”, iASA selects the slice of
dependency graph that records the generation and processing of rule x.

To answer the question “why is rule x scored higher than rule y”, iASA first searches
for the two rules in the dependency graph. Then iASA compares the two slices of the
dependency graph corresponding to x and y. When comparing the slices, it focuses on
the places where the two rules are evaluated and scored. iASA outputs the details of the
scores on the two rules. The details of the scores indicate to the user that the difference
between the two rules. For example, the user can find from the scores in which step the
rule x scored higher than the rule y so that it survives in the final rules.

To answer the question “why is rule x not present”, iASA first examines the
dependency graph to check whether rule x has been generated before. If it has, then
iASA finds out where it has been eliminated, and searches for the places where the
rule is scored. iASA outputs the scores of the rule on initial rule set, original training

132 J. Tang et al.

corpus, the final score, and the threshold. By comparing the scores with each other
and with the threshold, the user can know why the rule is not present. For example,
the reason might be the score of the rule is below the threshold.

If rule x has not been generated, then iASA checks whether or not the rule can be
generalized from the initial rule set. We conduct the check by searching for whether there
are rules that are covered by the rule. Success of the check indicates that the rule can be
generalized (but did not). Then iASA checks why it was not generated. We conduct the
check by tracing all rules that are covered by the rule. Those rules may be selected in
different pair of similar rules for induction. iASA outputs all covered rules and presents
the similar rule pairs that include the covered rules, and their similarity scores.

To answer the question “which rule is an instance annotated by?”, iASA searches
for the rule in the predecessors of annotated instance. At last, iASA outputs the rule.

By the explanation module, the user can take corresponding actions for improving
the learned rules or the annotation results. For example, the user finds that a rule is
not present in the learned rule set. He can first ask the explanation module the
question, and the explanation returns the answer (e.g. the answer is: the rule is
generated; however, it is pruned because its score is below the threshold). And then
the user can choose to accept the rule.

7 Experiments and Discussion

7.1 Experimental Setup

In existing annotation systems, some are manual, some are based on GATE (its rules
need to be predefined manually), and most of the semi-automatic semantic annotation
systems exploit existing IE algorithms. Table 5 lists the relationships between IE
algorithms and some semantic annotation systems.

For the semi-automatic semantic annotation system, its performance naturally
depends on the IE algorithms that it exploits. Therefore, to evaluate iASA, we
compare iASA with the IE algorithms used in the semantic annotation systems, e.g.
LP2 (LP2 is an algorithm for adaptive Information Extraction from Web-related text
that induces symbolic rules learning from a corpus tagged with SGML tags). We
conducted the comparison between iASA and some other popular algorithms (e.g.
Rapier, SRV, HMM, BWI, Whisk, etc).

Our experiments are performed on two standard tasks for adaptive IE: the CMU
seminar announcements [20] and Austin job announcements [7]1.

CMU seminar task consists of 485 seminar announcements from Carnegie Mellon
University. The announcements contain details of the upcoming seminars. Each
seminar is annotated with unique starting time, ending time, location and possible
multiple speaker name. We denote CMU as the data set of CMU seminar
announcements.

The Austin job task consists of 300 newsgroup messages on job details in Austin
area. The task has been required to annotate 17 elements (see table 7). We denote
JOBS as the data set of Austin job announcements.

1 http://www.isi.edu/info-agents/RISE/repository.html

 iASA: Learning to Annotate the Semantic Web 133

Table 5. Relationships between semantic annotation systems and IE algorithms

SA Systems IE algorithms
S-CREAM LP2

MnM LP2, Badger, Marmot, Crystal
SHOE Manual

AeroDAML AeroText, NLP
Annotea Manual

KIM GATE
SEAN Syntactic and semantic structure learning

Protégé 2000 Manual
OntoMat-Annotizer LP2

Melita LP2
Artequakt GATE
SemTag TBD
SCORE Name entity and relation learning

In experiments, we used a random 50:50 split of the two datasets and repeated 10
times. We used 50:50 split for facilitating the comparison because the results for
BWI, RAPIER and LP2, etc [33] use the same splits for each system.

All experiments use the strategy of dynamic window size and machine learning
methods to conduct instance selection and missing instance prediction.

7.2 Evaluation Measures

A truly comprehensive comparison should compare each algorithm on the same
dataset, using the same splits, and the same scoring system. Unfortunately, it is
impossible to end up with a conclusive comparison of different algorithms using
current published results. Different algorithms have been evaluated by slightly
different methodologies [33].

In semantic annotation, two kinds of issues would be considered with respect to the
evaluation: how to decide an instance is correct and how to count the correct/wrong
instances.

For the first issue, we take a compromised approach of combining exact matches
and partial matches. Exact match contributes a full score and partial match contributes
a half score. For example, if the correct speaker is “Dr Jim Boshears, PhD” and iASA
annotates “Dr Jim Boshears” as a speaker, this would be viewed as partial match and
count as half a correct instance (0.5).

For the second issue, there exist two approaches: instance exact matching, value
exact matching. The former one requires the system to annotate all possible instances.
Thus if a document contains a stime’s instance which has two occurrences “1:00 PM”
and “1 p.m”, then the system is required to annotate them both. The second approach
only compares the output annotations. In this case, it is sufficient to annotate stime
either by “1:00 PM” or “1 p.m” as they refer to the same meaning. In this paper, we
adopt the later approach to count the correct/wrong instances. As for the multiple
instances referring to the same meaning, we only count one time.

In all the experiments, we conducted evaluations in terms of F-measure (=1). The
evaluation measure has been introduced in section 3.3.

134 J. Tang et al.

7.3 Experimental Results

Table 6 shows the comparison between iASA and several algorithms on CMU. The
columns respectively represent the Algorithm, F1-score on entity starting time,
ending time, location and speaker name, and the average F1-score.

Table 6. Comparison of the seven methods on CMU (%)

Algorithm stime etime speaker location Average
BWI 99.6 93.9 67.7 76.7 83.9

HMM 98.5 62.1 76.6 78.6 82.0
SRV 98.5 77.9 56.3 72.3 77.1

Rapier 93.4 96.2 53.0 72.7 77.3
Whisk 92.6 86.0 18.3 66.4 64.9

LP2 99.0 95.5 77.6 75.0 86.0
iASA 99.8 95.2 75.7 76.5 85.8

As shown in table 6, we see that iASA outperforms most of the other algorithms
(averagely +2.26% wrt BWI, +4.63% wrt HMM, +11.28% wrt SRV, +11.0% wrt
Rapier, +32.2% wrt to Whisk), and is competitive with (LP)2 (-0.2%).

In JOBS, It requires to annotate the seventeen kinds of information related to
computer job (some are unique and some are not). We used half of the corpus to train,
and the rest to test the learned rules. Table 7 shows the experimental results. The
columns respectively represent the entity that is required to annotate, three algorithms
(Rapier, BWI, and (LP)2), and iASA.

Table 7. Comparison of the four methods on JOBS (%)

Entity Rapier BWI (LP)2 iASA
Id 97.5 100.0 100.0 100.0

title 40.5 50.1 43.9 89.1
company 69.5 78.2 71.9 73.6

salary 67.4 - 62.8 80.0
recruiter 68.4 - 80.6 91.3

state 90.2 - 84.7 91.5
city 90.4 - 93.0 95.6

country 93.2 - 81.0 96.6
language 80.6 - 91.0 83.2
platform 72.5 - 80.5 82.4

application 69.3 - 78.4 73.8
area 42.4 - 66.9 55.3

req-years-e 67.1 - 68.8 73.7
des-years-e 87.5 - 60.4 66.7
req-degree 81.5 - 84.7 65.9
des-degree 72.2 - 65.1 80.0
post date 99.5 - 99.5 100.0
Average 75.1 - 84.1 89.4

 iASA: Learning to Annotate the Semantic Web 135

We see averagely iASA significantly outperforms Rapier (by +19%) and (LP)2 (by
+6.3%) in terms of F1-measure. On the three entities that are available for BWI, iASA
significantly outperforms it on title (+77.8%), and underperforms it on company (-5.9%).

7.4 Discussion

Intuitively, dynamic window size can optimize the learning scenario, instance
selection can improve the precision by pruning the potential wrong annotations, and
missing instance prediction can improve the recall of the annotation. We performed
several special experiments for confirming the idea.

1. Dynamic window size vs. Fixed window size
In our experiments, some elements are not affected by the window size, while the
others are sensitive to it. For the entities that are sensitive to window size, some prefer
small window size while the others prefer large window size.

We give an experimental comparison of dynamic window size and fixed window
size. We conducted the comparison on CMU. The result is shown in figure 12.

40

60

80

100

etime stime speaker location Average

F-
sc

or
e(

%
)

size=2 3 4 6 8 dynamic

Fig. 12. Comparison between different fixed window size and dynamic window size on CMU

By fixed-window size, the best average result is 82.8% obtained by using fixed-
window size 8, and the second is 81.4% when the window size is set to 6. The result
of dynamic window size outperforms that of all the fixed window size (+3.6% than
that of size=8, +5.4% than that of size=6).

We also see that for the entities that are sensitive to the window size, the
improvements by dynamic strategy are significantly (e.g. for speaker, the
improvements are respectively +54.2% and +63.5% compared to the results of size=4
and size=3).

We note that optimizing dynamic window size is a time consuming process, which
limits its applications with large scale ontology.

2. Correct instance selection vs. High scored selection vs. Without selection
We conducted the experiment to test the performance of the proposed method for
correct instance selection. We conducted the comparison of results by correct instance

136 J. Tang et al.

selection, high scored selection, and result without any selection. By high scored
selection, we mean selecting the annotated instances by the highest scored rules. We
conducted the comparison on JOBS. (On CMU, the two selection methods do not
affect the results of the four entities.)

Table 8 shows the comparison. The columns respectively represent entity, F1-
scores (F) without selection, with high scored selection and with correct instance
selection. For short, we use ML to denote correct instance selection by machine
learning; we use HS to denote high scored selection. In table 8, we also present the
recall (R) and error rate (E) of the selection. Recall indicates how many correct
instances are selected. Error rate indicates the accuracy of instance selection. The
selection methods work on six entities in JOBS, and do not affect the other eleven
entities. Therefore, in table 8, we list only the six entities and omit details of the other
eleven entities.

Table 8. Correct instance selection vs. High scored (HS) selection in JOBS (%)

HS selection ML selection
Entity

Without
selection R E F R E F

title 77.1 33.3 0 82.1 74.2 0 89.1
platform 79.2 0 0 79.2 72.0 0 80.9

city 88.2 42.9 33.3 92.3 52.5 0 95.6
area 50.6 0 0 50.6 72.9 33.3 53.1

application 67.7 0 0 67.7 77.0 5.0 71.2
req-degree 57.2 0 0 57.2 50.0 12.5 65.9
Average 70.0 - 71.5 - 76.0

We see that ML based instance selection significantly outperforms high scored
selection (+6.3% on average). The improvement over the result without selection is
also significant (+8.6% on average). By high score selection, only two entities
obtained improvements: title and city. By ML selection, all the six entities obtained
improvements.

We also note that the recall of the ML based selection is still low (ranging from
50% to 77%) and errors are also induced by the wrong selection (e.g. area,
application, and req-degree). This also means that we need further improve it.

3. ML based prediction vs. No prediction
We exploit machine learning methods to improve the recall of iASA. We conducted
the comparison between results by machine learning based prediction and that without
prediction. We conducted the comparison on JOBS. (On CMU, the prediction
methods do not affect the results of the four entities.)

Table 9 shows the experiment results on JOBS. ML denotes the machine learning
based method for prediction; E denotes the error rate of ML based prediction; F
denotes the F1-score. The prediction methods work on four entities in JOBS, and do
not affect the other thirteen entities. Therefore, in table 9, we list only the four entities
and omit details of the other thirteen entities.

 iASA: Learning to Annotate the Semantic Web 137

Table 9. ML based prediction vs. No prediction on JOBS (%)

ML Entity No prediction
E F

language 75.7 0 83.2
platform 80.9 33.3 82.4

application 71.2 3.8 73.8
area 53.1 15 55.3

Average 70.1 - 73.7

By ML based prediction, we have observed improvement on the four entities (by
+5.1% on average in terms of F1-measure). We have also observed that the prediction
might slightly decrease the precision because of the wrong prediction.

On the other hand, we see that the prediction method only works on four entities in
the two data sets. Because the instances of other entities (four entities in CMU and
thirteen entities in JOBS) are not enumerative type and their instance values are too
sparse. Moreover, the prediction introduces errors (ranging from 3.8% to 33.3%).
Some errors (about 50%) imported from the fact that instance value of entity platform
and area are similar. Such similarity confuses the prediction method.

4. More analysis
(1) From the experiments, we see that for the majority of the elements in the two

tasks, iASA outperforms the other algorithms. On CMU, iASA averagely
outperforms them (averagely +2.26% wrt BWI, +4.63% wrt HMM, +11.28%
wrt SRV, +11.0% wrt Rapier, +32.2% wrt Whisk,), and is competitive with
(LP)2 (-0.2%). On JOBS, iASA averagely outperforms Rapier (by +19%) and
(LP)2 (by +6.3%).

(2) We conducted the analysis on each entity. On entities stime, etime in the CMU
and id, posting_date, platform in JOBS, almost all algorithms perform well.
These entities often have clear common linguistic information either in their
contexts or in their body patterns. On the other hand, location and speaker are
somewhat difficult for iASA. There may be two reasons. One is that these
entities have little common linguistic information and their contexts are always
inconsistent. The other lies in that several entities often appear in a document in
a particular relationship which makes the situation suitable for learning them
together. For example, the stime and etime in the CMU, and title with other
elements (area, country, state, etc.) in the JOBS. This is the part of our future
work for iASA.

(3) Considering the six elements that underperform LP2 or Rapier, they can be
classified into two groups: des_years_e, req_degree and area, language,
application, company.

For the former two entities, we found that the two entities are difficult
distinguished even by human. The context and body pattern for them are very similar.
Analysis of syntactic structure and semantic structure can help to construct long
distant context and semantic context (e.g. subject predicate object) and may correct
the errors.

138 J. Tang et al.

For the later four elements, the precisions are acceptable but the recalls are low. By
experimental analysis, we found that many learned rules only are comprised of body
patterns (i.e. left pattern and right pattern are null, e.g. “C++” for language), which
means that such annotations heavily depend on whether the body patterns appear in
the training samples. Two approaches may be useful to deal with such problems:
increasing training samples and creating domain thesaurus. More training samples can
induce the rules covering more body patterns. But more training samples also means
more manual works. Creating domain thesaurus means to construct a word list for the
entity (e.g. language) to assist the annotation.

7.5 Applications

We have applied iASA to a practical application: TIPSI.
TIPSI is a project from Tsinghua-ITF Co-Lab. In TIPSI, we aim to extract and

annotate the information in company annual reports for Stock Exchange.
The company annual report is a semi-structured document. In TIPSI, we first

extract the logic structure from annual report. We conducted the logic structure
extraction by a logic structure extractor. See [50] for details. Then, the document is
organized into a tree structure. It is similar to the ‘Document Map’ in Office Word.
Next, for each node in the logic structure, we applied iASA to annotate it according to
the predefined ontology of company annual report.

For example, figure 13 (a) shows the user interface of TIPSI and figure 13 (b)
shows the output of annotation. There are four main fields on the user interface. The
top-left window shows the document logic structure. The mid window shows the text
content of the selected node in logic structure. The right-top window shows the
predefined ontology. The bottom window is a rule management tool.

(a) (b)

Fig. 13. Screenshots of TIPSI

In training stage, when user selects the text on the mid window, iASA
automatically carries out tokenization and NLP processing, and then generates an
initial rule. The rule can be incrementally added into the learned rule set and can be
added to the initial rule set to retrain the whole rule set. If the rule is already covered

 iASA: Learning to Annotate the Semantic Web 139

by some other rules in the learned rule set, the system will prompt the user about that.
In this way, the rule learning is a user interaction stage. User can also manually create
a new rule or correct learned rules.

In annotation stage, iASA annotates documents by using the learned rules. It also
records the occurring position of each instance. And the user can be navigated to
instances by selecting the concept or property in the ontology. When the user selects a
concept/property in the ontology, the system will highlight the annotated instance(s).
Figure 13 (a) shows the scenario. In the mid window, the highlighted text is an
instance of company Chinese name.

After annotation, the user can choose to output the annotation results. Figure 13 (b)
shows the annotation results by a popup window. The results are presented in XML
format according to the requirement of the project.

We are also trying to apply the tool into Contact Search on internet.
In Contact Search, we aim to annotate the contact information for a given person.

The user inputs a person name. The system submits the person’s name to Google.
Then we use a text classifier to identify the web page that contains the contact
information of the person. After that, we apply the iASA to annotate the contact
information. The contact information includes: person name, email, telephone, fax,
homepage, address, and job title. The project is still ongoing and the preliminary
results show that the tool is promising.

8 Related Works

In this section, we introduce the related works from four aspects: Knowledge
Acquisition Frameworks, Annotation Framework, (Semi-)Automated Annotation with
Support from Information Extraction, and Information Extraction. There are a number
of available systems that address these four aspects. A complete review of this subject
is therefore outside the scope of this paper. We present some of them through their
principles and availabilities.

8.1 Knowledge Acquisition Frameworks

Several systems are designed to allow for knowledge acquisition and to use
knowledge markups in semantic web, for example: Protégé-2000 [18], WebKB [35],
SHOE [26] and Artequakt [1]. These four systems all start from providing manual
mark-up by editors.

Protégé-2000 is a tool which supports knowledge acquisition. But it doesn’t
support managing and annotating the web pages.

WebKB uses conceptual graphs to represent the semantic content of Web
documents. It embeds conceptual graph statements into HTML pages. Essentially
they offer a web template-based knowledge acquisition framework.

SHOE is one of the earliest systems for adding semantic annotations to web pages.
SHOE Knowledge Annotator allows users to markup pages manually in SHOE
guided by ontologies available locally or via a URL. These marked pages can be
reasoned about by SHOE-aware tools such as SHOE Search. Such tools are described
in [30, 48].

140 J. Tang et al.

The Artequakt project links a knowledge extraction tool with ontology to achieve
knowledge support and to guide information extraction. The extraction tool searches
for online documents and extracts knowledge that matches the given classification
structure. Knowledge extraction is further enhanced by using a lexicon-based term
expansion mechanism that provides extended ontology terminology [1].

8.2 Annotation Frameworks

There are a number of systems designed particularly for annotation, for example:
Annotea [27], Ontobroker [19], OntoMat-Annotizer, SEAN [37], etc.

Annotea is a Web-based shared annotation system based on a general-purpose
open resource description framework (RDF) infrastructure. In Annotea, the
annotations are modeled as a class of metadata. Annotations are viewed as statements
made by an author about a Web document.

Ontobroker facilitates manual annotation of HTML documents with semantic
markups.

SEAN automatically discovers and labels concept instances in template-based,
content-rich HTML documents according to an ontology. It combines structural and
semantic analysis for annotation. SEAN focuses on well-organized documents, for
example documents generated from databases.

8.3 (Semi-)Automated Annotation with Support from Information
Extraction

Recently, efforts have been put into automating the annotation task by using machine
learning methods. The principal tool is “wrapper” (see [11, 29, 31]). The Semantic
Annotation systems which use IE algorithms can be referred to Table 5.

For example, S-CREAM [24], MnM [49] and Melita [10] are three systems
exploiting IE algorithm LP2 to automate the procedure of annotation.

S-CREAM is a comprehensive framework for creating annotations, relational
metadata in the semantic web, including tools for both manual and semi-automatic
annotation of pages. It also comprises inference services, crawler, document
management system, ontology guidance/fact browser, document editors/viewers, and
a meta ontology.

MnM produces semantic markups with the support from IE algorithm. Besides
LP2, it also integrates other IE components (Marmot, Badger, Crystal) from the
University of Massachusetts at Amherst (UMass). It allows the semi-automatic
population of ontology with metadata.

Melita is a tool for defining and developing automatic ontology-based annotation
services that provides different views over the task. It provides manual and semi-
automatic annotation, as well as a rule editor for IE experts to edit the annotation
rules.

AeroDAML [28] is a tool which takes ontology as metadata and automatically
produces a semantic annotation using NLP techniques. It supports only DAML
language.

The KIM platform provides semantic annotation, indexing, retrieval services and
infrastructure. It performs information extraction based on ontology and a massive

 iASA: Learning to Annotate the Semantic Web 141

knowledge base [42]. The information extraction process in KIM is based on the
GATE platform. GATE’s pattern-matching grammars have been modified so as to
handle entity class information and to allow generalization of the rules. But, GATE
does not provide the feature for learning the annotation rules.

SCORE Enhancement Engine (SEE) supports heterogeneous contents, followed by
an automatic classification with extraction of context relevant, domain-specific
metadata. Extraction of semantic metadata includes not only the identification of the
relevant entities, but also the relationships within the context of relevant ontology. It
also presents an approach to automatic semantic annotation [22].

Li et al propose to combine natural language understanding with learning to
automatically generate annotations for specific domains [34]. They aim to learn the
syntactic structures from the sentences.

SemTag aims to annotate very large number of pages with terms from a standard
ontology in an automated fashion based on disambiguation annotation [17]. SemTag
operates as a centralized application with access to the entire database and associated
metadata. SemTag manipulates the text linking in web page to its correct resource by
disambiguation technology.

Esperonto has an annotation service that helps content providers bridge the gap
between the current Web and the Semantic Web. It uses wrapper technology to
upgrade content to Semantic Web content [6, 25].

So far, existing systems focus on different aspects that are concerned with semantic
annotation. Comparing with the above methods, three features make iASA different:
(1) similarity based rule induction; (2) using machine learning to refine the
annotation; (2) explanation method by visualizing the main stages in rule induction
and annotation procedure. Existing works improve the recall of annotation by
combining data mining and IE techniques. They are similar to the missing instance
prediction in iASA. In the experiments of [39], F1-measure could be improved about
3% by using soft matching mined rules when tested on 150 documents. It is difficult
to conduct the comparison of the method and our method. The reason lies in that, their
experiments were based on BWI algorithm (an IE algorithm), and their best F1-
measure result was only 45% that is below the average in our experiments.

8.4 Information Extraction Technologies

In information extraction, given a sequence of instances, we identify and pull out a
sub sequence of the input that represents the information we are interested in. Hidden
Markov Model [21, 44], Maximum Entropy Model [3, 8], Maximum Entropy Markov
Model [36], Support Vector Machines [13], Conditional Random Field [32], and
Voted Perceptron [12] are widely used information extraction models.

Information extraction has been applied, for instance, to named entity recognition
[51], table extraction [41], metadata extraction from research paper [23, 40].

9 Conclusions

In this paper, we have investigated the problem of semantic annotation. We have
proposed a tool, called iASA, which learns to automatically annotate web documents

142 J. Tang et al.

according to an ontology. By using similarity based rule induction, we have been able
to improve the rule learning procedure. We have tried to improve the annotation
results by making use of machine learning methods. Finally, we have developed an
explanation module to express the nature of the learner and annotator to users.
Experimental results show that our approach can significantly outperform most of the
existing wrapper methods. By the analysis of the experimental results, we observed
that the proposed methods (including: correct instance selection and missing instance
prediction) work well.

As the future work, we plan to make further improvement on the annotation
accuracy. We also want to apply the annotation method to other annotation
applications. Apart from that, several challenges for semantic annotation, also being
our research interests, including: (1) Using active learning to make iASA more
adaptive to new documents. By active learning, we can prepare training documents
more efficiently and more effectively. (2) Making use of the annotation. The goal of
semantic annotation is to improve the efficiency of obtaining information in web
environment. Therefore, a friendly and flexible mechanism for using the annotation is
necessary. (3) Combining ontology mapping with semantic annotation. In order to
reach interoperability in the heterogeneous environment of semantic web, a system
for integrating ontology mapping and semantic annotation is required. (4)
Multilingual annotation. Multilingual annotation is also important given the fact that
Chinese websites are increasing exponentially, which could be a future direction to go
as well.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under
Grant No. 60443002.

We offer thanks to anonymous reviewers for their valuable comments.
We express our great sadness and sorrow regarding Professor Hongjun Lu, who

passed away while this paper was in preparation.

References

1. H. Alani, S. Kim, D. Millard, M. Weal, W. Hall, P. Lewis, and N. Shadbolt. Automatic
Ontology-Based Knowledge Extraction from Web Documents. IEEE Intelligent Systems.
2003, 18(1):14-21.

2. R. Benjamins, J. Contreras. White Paper Six Challenges for the Semantic Web. Intelligent
Software Components. Intelligent software for the networked economy (isoco). April,
2002.

3. A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra, A Maximum Entropy Approach to
Natural Language Processing. In Computational Linguistics. 22, 1996:39-71

4. T. Berners-Lee, M. Fischetti, and M. L. Dertouzos. Weaving the Web: The Original
Design and Ultimate Destiny of the World Wide Web. 1999.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, vol.
284, May 2001:34-43

 iASA: Learning to Annotate the Semantic Web 143

6. P. Buitelaar and T. Declerck. Linguistic Annotation for the Semantic Web. In Annotation
for the Semantic Web, Frontiers in Artificial Intelligence and Applications Series, Vol. 96,
IOS Press, 2003.

7. M. E. Califf. Relational Learning Techniques for Natural Language Information
Extraction. Ph.D. thesis. University of Texas, Austin. 1998

8. H. L. Chieu and H. T. Ng. A Maximum Entropy Approach to Information Extraction from
Semi-Structured and Free Text. In Eighteenth national conference on Artificial
intelligence, 2002.

9. F. Ciravegna. (LP)2, an Adaptive Algorithm for Information Extraction from Web-related
Texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and
Mining held in conjunction with 17th International Joint Conference on Artificial
Intelligence (IJCAI), Seattle, Usa, August 2001.

10. F. Ciravegna, A. Dingli, J. Iria, and Y. Wilks. Multi-strategy Definition of Annotation
Services in Melita. In ISWC'03 Workshop on Human Language Technology for the
Semantic Web and Web Services, 2003:97-107

11. W. Cohen, L. Jensen, A Structured Wrapper Induction System for Extracting Information
from Semi-structured Documents, In Proceedings of the Workshop on Adaptive Text
Extraction and Mining (IJCAI’01), 2001.

12. M. Collins. Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In Proceedings of the Conference on Empirical
Methods in NLP, 2002.

13. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning 20, 1995:273-297
14. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics, 2002.

15. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. Andrea Stein. OWL Web Ontology Language
Reference. W3C Recommendation. Available at http://www.w3.org/TR/owl-ref/. 10
February 2004.

16. R. Dhamankar, Y. Lee, A.H. Doan, A. Halevy, and P. Domingos. iMAP: Discovering
Complex Semantic Matches between Database Schemas. SIGMOD 2004 June 1318, 2004,
Paris, France.

17. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K. S.
McCurley, S. Rajagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien. A Case for
Automated Large-scale Semantic Annotation. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web. Published by Elsevier B.V. July, 2003:115-
132

18. H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen. Automatic Generation of Ontology
Editors. In Proceedings of the 12th Banff Knowledge Acquisition Workshop, Banff
Alberta, Canada, 1999.

19. D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: Or how to enable
intelligent access to the WWW. In Proceedings of 11th Banff Knowledge Acquisition for
Knowledge-Based SystemsWorkshop, Banff, Canada, 1998.

20. D. Freitag and N. Kushmerick. Boosted Wrapper Induction. In Proceedings of 17th
National Conference on Artificial Intelligence. 2000.

21. Z. Ghahramani and M. I. Jordan. Factorial Hidden Markov Models. Machine Learning,
1997, 29:245-273

144 J. Tang et al.

22. B. Hammond, A. Sheth, and K. Kochut, Semantic Enhancement Engine: A Modular
Document Enhancement Platform for Semantic Applications over Heterogeneous Content,
in Real World Semantic Web Applications, V. Kashyap and L. Shklar, Eds., IOS Press.
December 2002:29-49

23. H. Han, L. Giles, E. Manavoglu, H. Zha, Z. Zhang, and E. Fox. Automatic Document
Metadata Extraction Using Support Vector Machine. In Proceedings of Joint Conference
on Digital Libraries (JCDL 2003). 2003:37-48

24. S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM—Semi-automatic Creation of
Metadata, In Proceedings of the 13th International Conference on Knowledge Engineering
and Management (EKAW 2002), Siguenza, Spain, 2002:358-372.

25. S. Handschuh and S. Staab. Annotation for the Semantic Web. Volume 96 Frontiers in
Artificial Intelligence and Applications. New IOS Publication. 2003

26. J. Heflin and J. Hendler. Searching the Web with SHOE. In Proceedings of AAAI-2000
Workshop on AI for Web Search, Austin, Texas, 2000.

27. J. Kahan and M. R. Koivunen. Annotea: an Open RDF Infrastructure for Shared Web
Annotations. In Proceedings of World Wide Web, 2001:623-632.

28. P. Kogut and W. Holmes. AeroDAML: Applying Information Extraction to Generate
DAML Annotations from Web Pages. 2001.

29. N. Kushmerick, D.S. Weld, and R.B. Doorenbos. Wrapper Induction for Information
Extraction. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). Nagoya, Japan. 1997: 729-737.

30. T. Leonard and H. Glaser. Large Scale Acquisition and Maintenance from the Web
without Source Access. http://www.semannot2001.aifb.uni-
karlsruhe.de/positionpapers/Leonard.pdf. 2001.

31. K. Lerman, C. Knoblock, S. Minton, Automatic data extraction from lists and tables in
web sources, in: IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, Seattle,
WA, August 2001.

32. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In ICML 01, 2001.

33. A. Lavelli, M. Califf, F. Ciravegna, F. Freitag, D. Giuliano, C. Kushmerick, and N.
Romano. A Critical Survey of the Methodology for IE Evaluation. In Proceedings of the
4th International Conference on Language Resources and Evaluation. 2004

34. J. Li and Y. Yu. Learning to Generate Semantic Annotation for Domain Specific
Sentences. In Proceedings of the Knowledge Markup and Semantic Annotation Workshop
in K-CAP 2001, Victoria, BC, 2001.

35. P. Martin and P. Eklund. Embedding Knowledge in Web Documents. In Proceedings of
the 8th International World Wide Web Conf. (WWW’8), Toronto, Elsevier Science B.V.
May 1999:1403-1419

36. A. McCallum, D. Freitag, and F. Pereira. Maximum Entropy Markov Models for
Information Extraction and Segmentation, In Proceedings of the ICML Coference, 2000.

37. S. Mukherjee, G. Yang, and I. V. Ramakrishnan. Automatic Annotation of Content-Rich
HTML Documents: Structural and Semantic Analysis. In Second International Semantic
Web Conference (ISWC), Sanibel Island, Florida, October 2003.

38. I. Muslea. Active Learning with Multiple Views. Ph.D. dissertation. (USC, 2002)
39. U. Y. Nahm and R. J. Mooney. Using Soft-Matching Mined Rules to Improve Information

Extraction. In Proceedings of the AAAI-2004 Workshop on Adaptive Text Extraction and
Mining (ATEM-2004), San Jose, CA, July, 2004:27-32.

 iASA: Learning to Annotate the Semantic Web 145

40. F. Peng and A. McCallum. Accurate Information Extraction from Research Papers using
Conditional Random Fields. In Proceedings of Human Language Technology Conference
and North American Chapter of the Association for Computational Linguistics (HLT-
NAACL), 2004.

41. D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table Extraction Using Conditional
Random Fields. In Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in information retrieval, 2003.

42. B. Popov, A. Kiryakov, D. Manov, A. Kirilov, D. Ognyanoff, and M. Goranov. Towards
Semantic Web Information Extraction. In Proceedings of the ISWC'03 Workshop on
Human Language Technology for the Semantic Web and Web Services, 2003.1-21

43. C. Schaffer. Selecting a Classification method by Cross-Validation. Machine Learning,
13(1), 1993:135-143

44. K. Seymore, A. McCallum, and R. Rosenfeld. Learning Hidden Markov Model Structure
for Information Extraction. In Proceedings of AAAI’99 Workshop on Machine Learning
for Information Extraction. 1999.

45. S. Soderland. Learning Information Extraction Rules for Semi-structured and Free Text.
Machine Learning. Jan, 1999:1-44

46. V. W. Soo, C. Y. Lee, C. –C. Li, S. L. Chen, and C. Chen. Automated Semantic
Annotation and Retrieval Based on Sharable Ontology and Case-based Learning
Techniques. In Proceedings of the 2003 Joint Conference on Digital Libraries. 2003 IEEE.

47. V. Vapnik. Statistical Learning Theroy. Springer Verlage, New York, 1998.
48. M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum, and M. Lanzoni.

Knowledge Extraction by Using an Ontology-based Annotation Tool. In Proceedings of
K-CAP 2001 Workshop on Knowledge Markup and Semantic Annotation, Victoria, BC,
Canada, October 2001.

49. M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and F. Ciravegna. MnM:
Ontology Driven Semiautomatic and Automatic Support for Semantic Markup, In
Proceedings of the 13th International Conference on Knowledge Engineering and
Management (EKAW 2002), Siguenza, Spain, 2002.

50. K. Zhang, P. Xu, and J. Li. Optimal Hierarchical Clustering based Logic Structure
Extraction. Journal of Tsinghua Science and Technology. 2005.

51. L. Zhang, Y. Pan, and T. Zhang. Recognising and using named entities: Focused named
entity recognition using machine learning. In Proceedings of the SIGIR'04, 2004.

A Survey of Schema-Based Matching Approaches�

Pavel Shvaiko1 and Jérôme Euzenat2

1 University of Trento, Povo, Trento, Italy
pavel@dit.unitn.it

2 INRIA, Rhône-Alpes, France
Jerome.Euzenat@inrialpes.fr

Abstract. Schema and ontology matching is a critical problem in many appli-
cation domains, such as semantic web, schema/ontology integration, data ware-
houses, e-commerce, etc. Many different matching solutions have been proposed
so far. In this paper we present a new classification of schema-based matching
techniques that builds on the top of state of the art in both schema and ontology
matching. Some innovations are in introducing new criteria which are based on
(i) general properties of matching techniques, (ii) interpretation of input informa-
tion, and (iii) the kind of input information. In particular, we distinguish between
approximate and exact techniques at schema-level; and syntactic, semantic, and
external techniques at element- and structure-level. Based on the classification
proposed we overview some of the recent schema/ontology matching systems
pointing which part of the solution space they cover. The proposed classification
provides a common conceptual basis, and, hence, can be used for comparing dif-
ferent existing schema/ontology matching techniques and systems as well as for
designing new ones, taking advantages of state of the art solutions.

1 Introduction

Matching is a critical operation in many application domains, such as semantic web,
schema/ontology integration, data warehouses, e-commerce, query mediation, etc. It
takes as input two schemas/ontologies, each consisting of a set of discrete entities (e.g.,
tables, XML elements, classes, properties, rules, predicates), and determines as output
the relationships (e.g., equivalence, subsumption) holding between these entities.

Many diverse solutions to the matching problem have been proposed so far, e.g.,
[2, 5, 21, 23, 40, 46, 49, 50, 52, 57, 76]. Good surveys through the recent years are pro-
vided in [39, 62, 75]; while the major contributions of the last decades are presented
in [3, 41, 42, 66]. The survey of [39] focuses on current state of the art in ontology
matching. Authors review recent approaches, techniques and tools. The survey of [75]
concentrates on approaches to ontology-based information integration and discusses
general matching approaches that are used in information integration systems. How-
ever, none of the above mentioned surveys provide a comparative review of the existing
ontology matching techniques and systems. On the contrary, the survey of [62] is de-
voted to a classification of database schema matching approaches and a comparative

� For more information on the topic (e.g., tutorials, relevant events), please visit the Ontology
Matching web-site at www.OntologyMatching.org

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 146–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Survey of Schema-Based Matching Approaches 147

review of matching systems. Notice that these three surveys address the matching prob-
lem from different perspectives (artificial intelligence, information systems, databases)
and analyze disjoint sets of systems.

This paper aims at considering the above mentioned works together, taking in to ac-
count some novel schema/ontology matching approaches, and at providing a common
conceptual basis for their analysis. Although, there is a difference between schema and
ontology matching problems (see next section for details), we believe that techniques
developed for each of them can be of a mutual benefit. Thus, we bring together and
discuss systematically recent approaches and systems developed in schema and ontol-
ogy matching domains. We present a new classification of schema/ontology matching
techniques that builds on the work of [62] augmented in [29, 67] and [28]. Some in-
novations are in introducing new criteria which are based on (i) general properties
of matching techniques, (ii) interpretation of input information, and (iii) the kind of
input information. In particular, we distinguish between approximate and exact tech-
niques at schema-level; and syntactic, external, and semantic techniques at element- and
structure-level. Based on the classification proposed we provide a comparative review
of the recent schema/ontology matching systems pointing which part of the solution
space they cover. In this paper we focus only on schema-based solutions, i.e., matching
systems exploiting only schema-level information, not instance data.

The rest of the paper is organized as follows. Section 2 provides, via an example,
the basic motivations and definitions to the schema/ontology matching problem. Sec-
tion 3 discusses possible matching dimensions. Section 4 introduces a classification of
elementary automatic schema-based matching techniques and discusses in detail possi-
ble alternatives. Section 5 provides a vision on classifying matching systems. Section 6
overviews some of the recent schema/ontology matching solutions in light of the classi-
fication proposed pointing which part of the solution space they cover. Section 7 reports
some conclusions and discusses the future work.

2 The Matching Problem

2.1 Motivating Example

To motivate the matching problem, let us use two simple XML schemas that are shown
in Figure 1 and exemplify one of the possible situations which arise, for example, when
resolving a schema integration task.

Suppose an e-commerce company needs to finalize a corporate acquisition of an-
other company. To complete the acquisition we have to integrate databases of the two
companies. The documents of both companies are stored according to XML schemas S
and S′ respectively. Numbers in boxes are the unique identifiers of the XML elements.
A first step in integrating the schemas is to identify candidates to be merged or to have
taxonomic relationships under an integrated schema. This step refers to a process of
schema matching. For example, the elements with labels Office Products in S and in
S′ are the candidates to be merged, while the element with label Digital Cameras in S′

should be subsumed by the element with label Photo and Cameras in S. Once the cor-
respondences between two schemas have been determined, the next step has to generate

148 P. Shvaiko and J. Euzenat

Fig. 1. Two XML schemas

query expressions that automatically translate data instances of these schemas under an
integrated schema.

2.2 Schema Matching vs Ontology Matching

Many different kinds of structures can be considered as data/conceptual models: de-
scription logic terminologies, relational database schemas, XML-schemas, catalogs and
directories, entity-relationship models, conceptual graphs, UML diagrams, etc. Most of
the work on matching has been carried out among (i) database schemas in the world of
information integration, (ii) XML-schemas and catalogs on the web, and (iii) ontolo-
gies in knowledge representation. Different parties, in general, have their own stead-
fast preferences for storing data. Therefore, when coordinating/integrating data among
their information sources, it is often the case that we need to match between various
data/conceptual models they are sticked to. In this respect, there are some important
differences and commonalities between schema and ontology matching. The key points
are:

– Database schemas often do not provide explicit semantics for their data. Seman-
tics is usually specified explicitly at design-time, and frequently is not becoming
a part of a database specification, therefore it is not available [56]. Ontologies are
logical systems that themselves obey some formal semantics, e.g., we can interpret
ontology definitions as a set of logical axioms.

– Ontologies and schemas are similar in the sense that (i) they both provide a vocab-
ulary of terms that describes a domain of interest and (ii) they both constrain the
meaning of terms used in the vocabulary [37, 70].

– Schemas and ontologies are found in such environments as the Semantic Web, and
quite often in practice, it is the case that we need to match them.

On the one side, schema matching is usually performed with the help of techniques
trying to guess the meaning encoded in the schemas. On the other side, ontology match-
ing systems (primarily) try to exploit knowledge explicitly encoded in the ontologies.

A Survey of Schema-Based Matching Approaches 149

In real-world applications, schemas/ontologies usually have both well defined and ob-
scure labels (terms), and contexts they occur, therefore, solutions from both problems
would be mutually beneficial.

2.3 Problem Statement

Following the work in [11, 27], we define a mapping element as a 5-uple:
〈id, e, e′, n, R〉, where

– id is a unique identifier of the given mapping element;
– e and e′ are the entities (e.g., tables, XML elements, properties, classes) of the first

and the second schema/ontology respectively;
– n is a confidence measure in some mathematical structure (typically in the [0,1]

range) holding for the correspondence between the entities e and e′;
– R is a relation (e.g., equivalence (=); more general (�); disjointness (⊥); overlap-

ping ()) holding between the entities e and e′.

An alignment is a set of mapping elements. The matching operation determines the
alignment (A′) for a pair of schemas/ontologies (o and o′). There are some other pa-
rameters which can extend the definition of the matching process, namely: (i) the use of
an input alignment (A) which is to be completed by the process; (ii) the matching pa-
rameters, p (e.g., weights, thresholds); and (iii) external resources used by the matching
process, r (e.g., thesauri); see Figure 2.

o �������A �

o′ 						
 Matching A′�

p

�

r

�

Fig. 2. The matching process

For example, in Figure 1, according to some matching algorithm based on linguistic
and structure analysis, the confidence measure (for the fact that the equivalence relation
holds) between entities with labels Photo and Cameras in S and Cameras and Photo
in S′ could be 0.67. Suppose that this matching algorithm uses a threshold of 0.55 for
determining the resulting alignment, i.e., the algorithm considers all the pairs of entities
with a confidence measure higher than 0.55 as correct mapping elements. Thus, our hy-
pothetical matching algorithm should return to the user the following mapping element:
〈id5,4, Photo and Cameras, Cameras and Photo, 0.67, =〉. However, the relation
between the same pair of entities, according to another matching algorithm which is
able to determine that both entities mean the same thing, could be exactly the equiva-
lence relation (without computing the confidence measure). Thus, returning to the user
〈id5,4, Photo and Cameras, Cameras and Photo, n/a,=〉.

150 P. Shvaiko and J. Euzenat

2.4 Applications

Matching is an important operation in traditional applications, such as information in-
tegration, data warehousing, distributed query processing, etc. Typically, these appli-
cations are characterized by structural data/conceptual models, and are based on a de-
sign time matching operation, thereby determining alignment (e.g., manually or semi-
automatically) as a prerequisite of running the system.

There is an emerging line of applications which can be characterized by their dy-
namics (e.g., agents, peer-to-peer systems, web services). Such applications, on the
contrary to traditional ones, require a run time matching operation and take advantage
of more ”explicit” conceptual models.

Below, we first discuss an example of a traditional application, namely, cata-
log integration. Then, we focus on emergent applications, namely, peer-to-peer (P2P)
databases, agent communication, and web services integration.

Catalog Integration. In B2B applications, trade partners store their products in elec-
tronic catalogs. Catalogs are tree-like structures, namely concept hierarchies with at-
tributes. Typical examples of catalogs are product directories of www.amazon.com,
www.ebay.com, etc. In order for a private company to participate in the marketplace
(e.g., eBay), it is used to determine correspondences between entries of its catalogs
and entries of a single catalog of a marketplace. This process of mapping entries among
catalogs is referred to the catalog matching problem, see [12]. Having identified the cor-
respondences between the entries of the catalogs, they are further analyzed in order to
generate query expressions that automatically translate data instances between the cata-
logs, see, for example, [74]. Finally, having aligned the catalogs, users of a marketplace
have a unified access to the products which are on sale.

P2P Databases. P2P networks are characterized by an extreme flexibility and dynam-
ics. Peers may appear and disappear on the network, their databases are autonomous
in their language, contents, how they can change their schemas, and so on. Since peers
are autonomous, they might use different terminology, even if they refer to the same
domain of interest. Thus, in order to establish (meaningful) information exchange be-
tween peers, one of the steps is to identify and characterize relationships between their
schemas. Having identified the relationships between schemas, next step is to use these
relationships for the purpose of query answering, for example, using techniques applied
in data integration systems, namely Local-as-View (LAV), Global-as-View (GAV), or
Global-Local-as-View (GLAV) [43]. However, P2P applications pose additional re-
quirements on matching algorithms. In P2P settings an assumption that all the peers
rely on one global schema, as in data integration, can not be made, because the global
schema may need to be updated any time the system evolves, see [36]. Thus, if in the
case of data integration schema matching operation can be performed at design time, in
P2P applications peers need coordinating their databases on the fly, therefore requiring
a run time schema matching operation.

Agent Communication. Agents are computer entities characterized by autonomy
and capacity of interaction. They communicate through speech-act inspired languages

A Survey of Schema-Based Matching Approaches 151

which determine the ”envelope” of the messages and enable agents to position them
within a particular interaction context. The actual content of messages is expressed
in knowledge representation languages and often refer to some ontology. As a conse-
quence, when two autonomous and independently designed agents meet, they have the
possibility of exchanging messages, but little chance to understand each others if they
do not share the same content language and ontology. Thus, it is necessary to provide
the possibility for these agents to match their ontologies in order to either translate their
messages or integrate bridge axioms in their own models, see [73]. One solution to this
problem is to have an ontology alignment protocol that can be interleaved with any
other agent interaction protocol and which could be triggered upon receiving a message
expressed in an alien ontology. As a consequence, agents meeting each other for the first
time and using different ontologies would be able to negotiate the matching of terms
in their respective ontologies and to translate the content of the message they exchange
with the help of the alignment.

Web Services Integration. Web services are processes that expose their interface to
the web so that users can invoke them. Semantic web services provide a richer and more
precise way to describe the services through the use of knowledge representation lan-
guages and ontologies. Web service discovery and integration is the process of finding a
web service able to deliver a particular service and composing several services in order
to achieve a particular goal, see [59]. However, semantic web services descriptions have
no reasons to be expressed by reference to exactly the same ontologies. Henceforth,
both for finding the adequate service and for interfacing services it will be necessary
to establish the correspondences between the terms of the descriptions. This can be
provided through matching the corresponding ontologies. For instance, if some service
provides its output description in some ontology and another service uses a second
ontology for describing its input, matching both ontologies will be used for (i) checking
that what is delivered by the first service matches what is expected by the second
one, (ii) verifying preconditions of the second service, and (iii) generating a media-
tor able to transform the output of the first service in order to be input to the second one.

In some of the above mentioned applications (e.g., two agents meeting or
looking for the web services integration) there are no instances given beforehand.
Thus, it is necessary to perform matching without them, based only on schema-level
information.

3 The Matching Dimensions

There are many independent dimensions along which algorithms can be classified. As
from Figure 2, we may classify them according to (i) input of the algorithms, (ii) char-
acteristics of the matching process, and (iii) output of the algorithms. Let us discuss
them in turn.

Input Dimensions. These dimensions concern the kind of input on which algorithms
operate. As a first dimension, algorithms can be classified depending on the data /

152 P. Shvaiko and J. Euzenat

conceptual models in which ontologies or schemas are expressed. For example, the
Artemis [13] system supports the relational, OO, and ER models; Cupid [46] supports
XML and relational models; QOM [26] supports RDF and OWL models. A second
possible dimension depends on the kind of data that the algorithms exploit: different
approaches exploit different information of the input data/conceptual models, some of
them rely only on schema-level information (e.g., Cupid [46], COMA [21]), others rely
only on instance data (e.g., GLUE [23]), or exploit both, schema- and instance-level
information (e.g., QOM [26]). Even with the same data models, matching systems do
not always use all available constructs, e.g., S-Match [34] when dealing with attributes
discards information about datatypes (e.g., string, integer), and uses only the attributes
names. In general, some algorithms focus on the labels assigned to the entities, some
consider their internal structure and the type of their attributes, and some others consider
their relations with other entities (see next section for details).

Process Dimensions. A classification of the matching process could be based on its
general properties, as soon as we restrict ourselves to formal algorithms. In particu-
lar, it depends on the approximate or exact nature of its computation. Exact algorithms
compute the absolute solution to a problem; approximate algorithms sacrifice exactness
to performance (e.g., [26]). All the techniques discussed in the remainder of the paper
can be either approximate or exact. Another dimension for analyzing the matching algo-
rithms is based on the way they interpret the input data. We identify three large classes
based on the intrinsic input, external resources, or some semantic theory of the consid-
ered entities. We call these three classes syntactic, external, and semantic respectively;
and discuss them in detail in the next section.

Output Dimensions. Apart from the information that matching systems exploit and
how they manipulate it, the other important class of dimensions concerns the form of
the result they produce. The form of the alignment might be of importance: is it a one-to-
one correspondence between the schema/ontology entities? Has it to be a final mapping
element? Is any relation suitable?

Other significant distinctions in the output results have been indicated in [32].
One dimension concerns whether systems deliver a graded answer, e.g., that the
correspondence holds with 98% confidence or 4/5 probability; or an all-or-nothing
answer, e.g., that the correspondence definitely holds or not. In some approaches
correspondences between schema/ontology entities are determined using distance
measures. This is used for providing an alignment expressing equivalence between
these entities in which the actual distance is the ground for generating a confidence
measure in each correspondence, usually in [0,1] range, see, for example, [29, 46].
Another dimension concerns the kind of relations between entities a system can
provide. Most of the systems focus on equivalence (=), while a few other are able to
provide a more expressive result (e.g., equivalence, subsumption (!), incompatibility
(⊥), see for details [12, 33]).

There are many dimensions that can be taken into account when attempting
at classifying matching methods. In the next section we present a classification of
elementary techniques that draws simultaneously on several such criteria.

A Survey of Schema-Based Matching Approaches 153

4 A Retained Classification of Elementary Schema-Based
Matching Approaches

In this section we discuss only schema-based elementary matchers. We address issues
of their combination in the next section. Therefore, only schema/ontology information
is considered, not instance data1. The exact/approximate opposition has not been used
because each of the methods described below can be implemented as exact or approxi-
mate algorithm, depending on the goals of the matching system. To ground and ensure
a comprehensive coverage for our classification we have analyzed state of the art ap-
proaches used for schema-based matching. The references section reports a partial list
of works which have been scrutinized pointing to (some of) the most important contri-
butions. We have used the following guidelines for building our classification:

Exhaustivity. The extension of categories dividing a particular category must cover its
extension (i.e., their aggregation should give the complete extension of the cate-
gory);

Disjointness. In order to have a proper tree, the categories dividing one category should
be pairwise disjoint by construction;

Homogeneity. In addition, the criterion used for further dividing one category should
be of the same nature (i.e., should come from the same dimension). This usually
helps guaranteeing disjointness;

Saturation. Classes of concrete matching techniques should be as specific and discrim-
inative as possible in order to provide a fine grained distinction between possible
alternatives. These classes have been identified following a saturation principle:
they have been added/modified till the saturation was reached, namely taking into
account new techniques did not require introducing new classes or modifying them.

Notice that disjointness and exhaustivity of the categories ensures stability of the clas-
sification, namely new techniques will not occur in between two categories. Classes of
matching techniques represent the state of the art. Obviously, with appearance of new
techniques, they might be extended and further detailed.

As indicated in introduction, we build on the previous work of classifying automated
schema matching approaches of [62]. The classification of [62] distinguishes between
elementary (individual) matchers and combinations of matchers. Elementary matchers
comprise instance-based and schema-based, element- and structure-level, linguistic-
and constrained-based matching techniques. Also cardinality and auxiliary information
(e.g., thesauri, global schemas) can be taken into account.

For classifying elementary schema-based matching techniques, we introduce two
synthetic classifications (see Figure 3), based on what we have found the most salient
properties of the matching dimensions. These two classifications are presented as two
trees sharing their leaves. The leaves represent classes of elementary matching tech-
niques and their concrete examples. Two synthetic classifications are:

1 Prominent solutions of instance-based schema/ontology matching as well as possible exten-
sions of the instance-based part of the classification of [62] can be found in [23] and [40]
respectively.

154 P. Shvaiko and J. Euzenat

Schema-Based Matching Techniques

Element-level Structure-level

Syntactic SemanticExternal

String-
based

Constraint-
based

Graph-
based

Taxonomy-
based

Linguistic
resource

Model-
based

- Name similarity
- Description
 similarity
- Global

namespaces

- Type
 similarity
- Key
 properties

- Lexicons
- Thesauri

- Graph
 matching
- Paths
- Children
- Leaves

- Taxonomic
 structure

- Propositional SAT
- DL-based

Language-
based

- Tokenization
- Lemmatization
- Morphological
 analysis
- Elimination

Alignment
reuse

- Entire schema/
 ontology
- Fragments

Terminological Structural

Syntactic

Linguistic Internal Relational

Semantic

Schema-Based Matching Techniques

Granularity /
Input Interpretation
Layer

Basic Techniques
Layer

Kind of Input
Layer

Upper level
formal

ontologies
- SUMO, DOLCE

External

Repository of
structures

- Structure's
metadata

Fig. 3. A retained classification of elementary schema-based matching approaches

– Granularity/Input Interpretation classification is based on (i) granularity of match,
i.e., element- or structure-level, and then (ii) on how the techniques generally inter-
pret the input information;

– Kind of Input classification is based on the kind of input which is used by elemen-
tary matching techniques.

The overall classification of Figure 3 can be read both in descending (focusing on
how the techniques interpret the input information) and ascending (focusing on the kind
of manipulated objects) manner in order to reach the Basic Techniques layer. Let us
discuss in turn Granularity/Input Interpretation, Basic Techniques, Kind of Input layers
together with supporting arguments for the categories/classes introduced at each layer.

Elementary matchers are distinguished by the Granularity/Input interpretation layer
according to the following classification criteria:

– Element-level vs structure-level. Element-level matching techniques compute map-
ping elements by analyzing entities in isolation, ignoring their relations with other
entities. Structure-level techniques compute mapping elements by analyzing how
entities appear together in a structure. This criterion is the same as first introduced
in [62].

A Survey of Schema-Based Matching Approaches 155

– Syntactic vs external vs semantic. The key characteristic of the syntactic techniques
is that they interpret the input in function of its sole structure following some
clearly stated algorithm. External are the techniques exploiting auxiliary (exter-
nal) resources of a domain and common knowledge in order to interpret the input.
These resources might be human input or some thesaurus expressing the relation-
ships between terms. The key characteristic of the semantic techniques is that they
use some formal semantics (e.g., model-theoretic semantics) to interpret the input
and justify their results. In case of a semantic based matching system, exact algo-
rithms are complete (i.e., they guarantee a discovery of all the possible mappings)
while approximate algorithms tend to be incomplete.

To emphasize the differences with the initial classification of [62], the new cate-
gories/classes are marked in bold face. In particular, in the Granularity/Input Interpre-
tation layer we detail further (with respect to [62]), the element- and structure-level
of matching by introducing the syntactic vs semantic vs external criteria. The reasons
of having these three categories are as follows. Our initial criterion was to distinguish
between internal and external techniques. By internal we mean techniques exploiting
information which comes only with the input schemas/ontologies. External techniques
are as defined above. Internal techniques can be further detailed by distinguishing be-
tween syntactic and semantic interpretation of input, also as defined above. However,
only limited, the same distinction can be introduced for the external techniques. In fact,
we can qualify some oracles (e.g., WordNet [53], DOLCE [31]) as syntactic or seman-
tic, but not a user’s input. Thus, we do not detail external techniques any further and
we omit in Figure 3 the theoretical category of internal techniques (as opposed to exter-
nal). Notice, that we also omit in further discussions element-level semantic techniques,
since semantics is usually given in a structure, and, hence, there are no element-level
semantic techniques.

Distinctions between classes of elementary matching techniques in the Basic Tech-
niques layer of our classification are motivated by the way a matching technique in-
terprets the input information in each concrete case. In particular, a label can be in-
terpreted as a string (a sequence of letters from an alphabet) or as a word or a phrase
in some natural language, a hierarchy can be considered as a graph (a set of nodes
related by edges) or a taxonomy (a set of concepts having a set-theoretic interpreta-
tion organized by a relation which preserves inclusion). Thus, we introduce the follow-
ing classes of elementary schema/ontology matching techniques at the element-level:
string-based, language-based, based on linguistic resources, constraint-based, align-
ment reuse, and based on upper level ontologies. At the structure-level we distinguish
between: graph-based, taxonomy-based, based on repositories of structures, and model-
based techniques.

The Kind of Input layer classification is concerned with the type of input considered
by a particular technique:

– The first level is categorized depending on which kind of data the algorithms work
on: strings (terminological), structure (structural) or models (semantics). The two
first ones are found in the ontology descriptions, the last one requires some seman-
tic interpretation of the ontology and usually uses some semantically compliant
reasoner to deduce the correspondences.

156 P. Shvaiko and J. Euzenat

– The second level of this classification decomposes further these categories if nec-
essary: terminological methods can be string-based (considering the terms as se-
quences of characters) or based on the interpretation of these terms as linguistic
objects (linguistic). The structural methods category is split into two types of meth-
ods: those which consider the internal structure of entities (e.g., attributes and their
types) and those which consider the relation of entities with other entities (rela-
tional).

Notice that following the above mentioned guidelines for building a classification the
terminological category should be divided into linguistic and non-linguistic techniques.
However, since non-linguistic techniques are all string-based, this category has been
discarded.

We discuss below the main classes of the Basic Techniques layer (also indicating
in which matching systems they are exploited) according to the above classification in
more detail. The order follows that of the Granularity/Input Interpretation classification
and these techniques are divided in two sections concerning element-level techniques
(§4.1) and structure-level techniques (§4.2). Finally, in Figure 3, techniques which are
marked in italic (techniques based on upper level ontologies and DL-based techniques)
have not been implemented in any matching system yet. However, we are arguing why
their appearance seems reasonable in the near future.

4.1 Element-Level Techniques

String-based techniques are often used in order to match names and name descrip-
tions of schema/ontology entities. These techniques consider strings as sequences of
letters in an alphabet. They are typically based on the following intuition: the more
similar the strings, the more likely they denote the same concepts. A comparison of
different string matching techniques, from distance like functions to token-based dis-
tance functions can be found in [16]. Usually, distance functions map a pair of strings
to a real number, where a smaller value of the real number indicates a greater similarity
between the strings. Some examples of string-based techniques which are extensively
used in matching systems are prefix, suffix, edit distance, and n-gram.

– Prefix. This test takes as input two strings and checks whether the first string starts
with the second one. Prefix is efficient in matching cognate strings and similar
acronyms (e.g., int and integer), see, for example [21, 34, 46, 50]. This test can be
transformed in a smoother distance by measuring the relative size of the prefix and
the ratio.

– Suffix. This test takes as input two strings and checks whether the first string ends
with the second one (e.g., phone and telephone), see, for example [21, 34, 46, 50].

– Edit distance. This distance takes as input two strings and computes the edit dis-
tance between the strings. That is, the number of insertions, deletions, and substitu-
tions of characters required to transform one string into another, normalized by the
length of the longest string. For example, the edit distance between NKN and Nikon
is 0.4. Some of matching systems exploiting the given technique are [21, 34, 57].

– N-gram. This test takes as input two strings and computes the number of common
n-grams (i.e., sequences of n characters) between them. For example, trigram(3)

A Survey of Schema-Based Matching Approaches 157

for the string nikon are nik, iko, kon. Thus, the distance between nkon and nikon
would be 1/3. Some of matching systems exploiting the given test are [21, 34].

Language-based techniques consider names as words in some natural language (e.g.,
English). They are based on Natural Language Processing (NLP) techniques exploiting
morphological properties of the input words.

– Tokenization. Names of entities are parsed into sequences of tokens by a tokenizer
which recognizes punctuation, cases, blank characters, digits, etc. (e.g., Hands-
Free Kits → 〈hands, free, kits〉, see, for example [33]).

– Lemmatization. The strings underlying tokens are morphologically analyzed in or-
der to find all their possible basic forms (e.g., Kits → Kit), see, for example [33].

– Elimination. The tokens that are articles, prepositions, conjunctions, and so on, are
marked (by some matching algorithms, e.g., [46]) to be discarded.

Usually, the above mentioned techniques are applied to names of entities before run-
ning string-based or lexicon-based techniques in order to improve their results. How-
ever, we consider these language-based techniques as a separate class of matching tech-
niques, since they can be naturally extended, for example, in a distance computation
(by comparing the resulting strings or sets of strings).

Constraint-based techniques are algorithms which deal with the internal constraints
being applied to the definitions of entities, such as types, cardinality of attributes, and
keys. We omit here a discussion of matching keys as these techniques appear in our
classification without changes with respect to the original publication [62]. However,
we provide a different perspective on matching datatypes and cardinalities.

– Datatypes comparison involves comparing the various attributes of a class with
regard to the datatypes of their value. Contrary to objects that require interpreta-
tions, the datatypes can be considered objectively and it is possible to determine
how a datatype is close to another (ideally this can be based on the interpretation
of datatypes as sets of values and the set-theoretic comparison of these datatypes,
see [71,72]). For instance, the datatype day can be considered closer to the datatype
workingday than the datatype integer. This technique is used in [30].

– Multiplicity comparison attribute values can be collected by a particular construc-
tion (set, list, multiset) on which cardinality constraints are applied. Again, it is
possible to compare the so constructed datatypes by comparing (i) the datatypes
on which they are constructed and (ii) the cardinality that are applied to them. For
instance, a set of between 2 and 3 children is closer to a set of 3 people than a set
of 10-12 flowers (if children are people). This technique is used in [30].

Linguistic resources such as common knowledge or domain specific thesauri are used
in order to match words (in this case names of schema/ontology entities are consid-
ered as words of a natural language) based on linguistic relations between them (e.g.,
synonyms, hyponyms).

158 P. Shvaiko and J. Euzenat

– Common knowledge thesauri. The approach is to use common knowledge thesauri
to obtain meaning of terms used in schemas/ontologies. For example, WordNet [53]
is an electronic lexical database for English (and other languages), where various
senses (possible meanings of a word or expression) of words are put together into
sets of synonyms. Relations between schema/ontology entities can be computed
in terms of bindings between WordNet senses, see, for instance [12, 33]. For ex-
ample, in Figure 1, a sense-based matcher may learn from WordNet (with a prior
morphological preprocessing of labels performed) that Camera in S is a hyper-
nym for Digital Camera in S′, and, therefore conclude that entity Digital Cameras
in S′ should be subsumed by the entity Photo and Cameras in S. Another type of
matchers exploiting thesauri is based on their structural properties, e.g., WordNet
hierarchies. In particular, hierarchy-based matchers measure the distance, for ex-
ample, by counting the number of arcs traversed, between two concepts in a given
hierarchy, see [35]. Several other distance measures for thesauri have been proposed
in the literature, e.g., [61, 64].

– Domain specific thesauri. These thesauri usually store some specific domain knowl-
edge, which is not available in the common knowledge thesauri, (e.g., proper
names) as entries with synonym, hypernym and other relations. For example, in
Figure 1, entities NKN in S and Nikon in S′ are treated by a matcher as syn-
onyms from a domain thesaurus look up: syn key - ”NKN:Nikon = syn”, see, for
instance [46].

Alignment reuse techniques represent an alternative way of exploiting exter-
nal resources, which contain in this case alignments of previously matched
schemas/ontologies. For instance, when we need to match schema/ontology o′ and
o′′, given the alignments between o and o′, and between o and o′′ from the exter-
nal resource, storing previous match operations results. The alignment reuse is moti-
vated by the intuition that many schemas/ontologies to be matched are similar to al-
ready matched schemas/ontologies, especially if they are describing the same appli-
cation domain. These techniques are particularly promising when dealing with large
schemas/ontologies consisting of hundreds and thousands of entities. In these cases,
first, large match problems are decomposed into smaller sub-problems, thus gener-
ating a set of schema/ontology fragments matching problems. Then, reusing previ-
ous match results can be more effectively applied at the level of schema/ontology
fragments compared to entire schemas/ontologies. The approach was first introduced
in [62], and later was implemented as two matchers, i.e., (i) reuse alignments of entire
schemas/ontologies, or (ii) their fragments, see, for details [2, 21, 63].

Upper level formal ontologies can be also used as external sources of common knowl-
edge. Examples are the Suggested Upper Merged Ontology (SUMO) [55] and Descrip-
tive Ontology for Linguistic and Cognitive Engineering (DOLCE) [31]. The key char-
acteristic of these ontologies is that they are logic-based systems, and therefore, match-
ing techniques exploiting them can be based on the analysis of interpretations. Thus,
these are semantic techniques. For the moment, we are not aware of any matching sys-
tems which use these kind of techniques. However, it is quite reasonable to assume that

A Survey of Schema-Based Matching Approaches 159

this will happen in the near future. In fact, for example, the DOLCE ontology aims
at providing a formal specification (axiomatic theory) for the top level part of Word-
Net. Therefore, systems exploiting WordNet now in their matching process might also
consider using DOLCE as a potential extension.

4.2 Structure-Level Techniques

Graph-based techniques are graph algorithms which consider the input as labeled
graphs. The applications (e.g., database schemas, taxonomies, or ontologies) are viewed
as graph-like structures containing terms and their inter-relationships. Usually, the sim-
ilarity comparison between a pair of nodes from the two schemas/ontologies is based
on the analysis of their positions within the graphs. The intuition behind is that, if two
nodes from two schemas/ontologies are similar, their neighbors might also be somehow
similar. Below, we present some particular matchers representing this intuition.

– Graph matching. There have been done a lot of work on graph (tree) matching
in graph theory and also with respect to schema/ontology matching applications,
see, for example, [65, 77]. Matching graphs is a combinatorial problem that can
be computationally expensive. It is usually solved by approximate methods. In
schema/ontology matching, the problem is encoded as an optimization problem
(finding the graph matching minimizing some distance like the dissimilarity be-
tween matched objects) which is further resolved with the help of a graph match-
ing algorithm. This optimization problem is solved through a fix-point algorithm
(improving gradually an approximate solution until no improvement is made). Ex-
amples of such algorithms are [50] and [30]. Some other (particular) matchers han-
dling DAGs and trees are children, leaves, and relations.

– Children. The (structural) similarity between inner nodes of the graphs is computed
based on similarity of their children nodes, that is, two non-leaf schema elements
are structurally similar if their immediate children sets are highly similar. A more
complex version of this matcher is implemented in [21].

– Leaves. The (structural) similarity between inner nodes of the graphs is computed
based on similarity of leaf nodes, that is, two non-leaf schema elements are struc-
turally similar if their leaf sets are highly similar, even if their immediate children
are not, see, for example [21, 46].

– Relations. The similarity computation between nodes can also be based on their
relations. For example, in one of the possible ontology representations of schemas
of Figure 1, if class Photo and Cameras relates to class NKN by relation hasBrand
in one ontology, and if class Digital Cameras relates to class Nikon by relation has-
Marque in the other ontology, then knowing that classes Photo and Cameras and
Digital Cameras are similar, and also relations hasBrand and hasMarque are simi-
lar, we can infer that NKN and Nikon may be similar too, see [48].

Taxonomy-based techniques are also graph algorithms which consider only the spe-
cialization relation. The intuition behind taxonomic techniques is that is-a links connect
terms that are already similar (being a subset or superset of each other), therefore their
neighbors may be also somehow similar. This intuition can be exploited in several dif-
ferent ways:

160 P. Shvaiko and J. Euzenat

– Bounded path matching. Bounded path matchers take two paths with links between
classes defined by the hierarchical relations, compare terms and their positions
along these paths, and identify similar terms, see, for instance [57]. For example, in
Figure 1, given that element Digital Cameras in S′ should be subsumed by the ele-
ment Photo and Cameras in S, a matcher would suggest FJFLM in S and FujiFilm
in S′ as an appropriate match.

– Super(sub)-concepts rules. These matchers are based on rules capturing the above
stated intuition. For example, if super-concepts are the same, the actual concepts
are similar to each other. If sub-concepts are the same, the compared concepts are
also similar, see, for example [19, 26].

Repository of structures stores schemas/ontologies and their fragments together with
pairwise similarities (e.g., coefficients in the [0 1] range) between them. Notice, that
unlike the alignment reuse, repository of structures stores only similarities between
schemas/ontologies, not alignments. In the following, to simplify the presentation, we
call schemas/ontologies or their fragments as structures. When new structures are to be
matched, they are first checked for similarity to the structures which are already avail-
able in the repository. The goal is to identify structures which are sufficiently similar to
be worth matching in more detail, or reusing already existing alignments. Thus, avoid-
ing the match operation over the dissimilar structures. Obviously, the determination of
similarity between structures should be computationally cheaper than matching them
in full detail. The approach of [63], in order to match two structures, proposes to use
some metadata describing these structures, such as structure name, root name, number
of nodes, maximal path length, etc. Then, these indicators are analyzed and are aggre-
gated into a single coefficient, which estimates similarity between them. For example,
schema S1 might be found as an appropriate match to schema S2 since they both have
the same number of nodes.

Model-based algorithms handle the input based on its semantic interpretation (e.g.,
model-theoretic semantics). Thus, they are well grounded deductive methods. Examples
are propositional satisfiability (SAT) and description logics (DL) reasoning techniques.

– Propositional satisfiability (SAT). As from [12, 32, 33], the approach is to decom-
pose the graph (tree) matching problem into the set of node matching problems.
Then, each node matching problem, namely pairs of nodes with possible rela-
tions between them is translated into a propositional formula of form: Axioms →
rel(context1, context2), and checked for validity. Axioms encodes background
knowledge (e.g., Digital Cameras→Cameras codifies the fact that Digital Cameras
is less general than Cameras), which is used as premises to reason about relations
rel (e.g., =, !, �, ⊥) holding between the nodes context1 and context2 (e.g.,
node 7 in S and node 12 in S′). A propositional formula is valid iff its negation is
unsatisfiable. The unsatisfiability is checked by using state of the art SAT solvers.
Notice that SAT deciders are correct and complete decision procedures for propo-
sitional satisfiability, and therefore, they can be used for an exhaustive check of all
the possible mappings.

A Survey of Schema-Based Matching Approaches 161

– DL-based techniques. The SAT-based approach computes the satisfiability of the-
ory merging both schemas/ontologies along an alignment. Propositional language
used for codifying matching problems into propositional unsatisfiability problems
is limited in its expressivity, namely it allows for handling only unary predicates.
Thus, it can not handle, for example, binary predicates, such as properties or roles.
However, the same procedure can be carried within description logics (expressing
properties). In description logics, the relations (e.g., =, !, �, ⊥) can be expressed
in function of subsumption. In fact, first merging two ontologies (after renaming)
and then testing each pair of concepts and roles for subsumption is enough for
aligning terms with the same interpretation (or with a subset of the interpretations
of the others). For instance, suppose that we have one ontology introducing classes
company, employee and micro-company as a company with at most 5 employees,
and another ontology introducing classes firm, associate and SME as a firm with at
most 10 associates. If we know that all associates are employees and we already
have established that firm is equivalent to company, then we can deduce that a micro-
company is a SME. However, we are not aware of existence of any schema/ontology
matching systems supporting DL-based techniques for the moment.

There are examples in the literature of DL-based techniques used in relevant to
schema/ontology matching applications. For example, in spatio-temporal database in-
tegration scenario, as first motivated in [60] and later developed in [68] the inter-schema
mapping elements are initially proposed by the integrated schema designer and are en-
coded together with input schemas in ALCRP(S2⊕T) language. Then, DL reasoning
services are used to check the satisfiability of the two source schemas and the set of
inter-schema mapping elements. If some objects are found unsatisfied, then the inter-
schema mapping elements should be reconsidered.

Another example, is when DL-based techniques are used in query processing sce-
nario [52]. The approach assumes that mapping elements between pre-existing domain
ontologies are already specified in a declarative manner (e.g., manually). User queries
are rewritten in terms of pre-existing ontologies and are expressed in Classic [10], and
further evaluated against real-world repositories, which are also subscribed to the pre-
existing ontologies. An earlier approach for query answering by terminological reason-
ing is described in [4].

Finally, a very similar problem to schema/ontology matching is addressed within
the system developed for matchmaking in electronic marketplaces [18]. Demand D
and supply S requests are translated from natural language sentences into Classic [10].
The approach assumes the existence of a pre-defined domain ontology T , which is also
encoded in Classic. Matchmaking between a supply S and a demand D is performed
with respect to the pre-defined domain ontology T . Reasoning is performed with the
help of the NeoClassic reasoner in order to determine the exact match (T |= (D ! S))
and (T |= (S ! D)), potential match (if D S is satisfiable in T), and nearly miss
(if D S is unsatisfiable in T). The system also provides a logically based matching
results rank operation.

162 P. Shvaiko and J. Euzenat

5 On Classifying Matching Systems

As the previous section indicates, elementary matchers rely on a particular kind of input
information, therefore they have different applicability and value with respect to differ-
ent schema/ontology matching tasks. State of the art matching systems are not made of
a single elementary matcher. They usually combine them: elementary matchers can be
used in sequence (called hybrid matchers in [62]), examples are [5, 46], or in parallel
(also called composite matchers [62]) combining the results (e.g., taking the average,
maximum) of independently executed matchers, see, for instance [21, 23, 26]. Finding
a better classification here is rather difficult.

The distinction between the sequential and parallel composition is useful from an
architectural perspective. However, it does not show how the systems can be distin-
guished in the matter of considering the alignment and the matching task, thus repre-
senting an user-centric perspective. Below, we provide a vision of a classification of
matching systems with respect to this point:

– Alignments as solutions. This category covers purely algorithmic techniques that
consider that an alignment is a solution to the matching problem. It could be charac-
terized as a (continuous or discrete) optimization problem, see, for example [30,50].

– Alignments as theorems. Systems of this category rely on semantics and require
the alignment to satisfy it. This category, strictly speaking, is a sub-category of
alignments as solutions (the problem is expressed in semantic terms). However, it
is sufficiently autonomous for being singled out, see, for example [32, 33].

– Alignments as likeness clues. This category refers to the algorithms which aim at
producing reasonable indications for a user to select the alignment, although using
the same techniques (e.g., string-based) as systems from the alignments as solutions
category, see, for example [21, 46].

6 Review of State of the Art Matching Systems

We now look at some recent schema-based state of the art matching systems in light of
the classification presented in Figure 3 and criteria highlighted in Section 5.

Similarity Flooding. The Similarity Flooding (SF) [50] approach utilizes a hybrid
matching algorithm based on the ideas of similarity propagation. Schemas are presented
as directed labeled graphs; grounding on the OIM specification [15] the algorithm ma-
nipulates them in an iterative fix-point computation to produce an alignment between
the nodes of the input graphs. The technique starts from string-based comparison (com-
mon prefix, suffix tests) of the vertices labels to obtain an initial alignment which is
refined within the fix-point computation. The basic concept behind the SF algorithm is
the similarity spreading from similar nodes to the adjacent neighbors through propaga-
tion coefficients. From iteration to iteration the spreading depth and a similarity measure
are increasing till the fix-point is reached. The result of this step is a refined alignment
which is further filtered to finalize the matching process. SF considers the alignment as
a solution to a clearly stated optimization problem.

Artemis. Artemis (Analysis of Requirements: Tool Environment for Multiple Informa-
tion Systems) [13] was designed as a module of the MOMIS mediator system [5] for

A Survey of Schema-Based Matching Approaches 163

creating global views. It performs affinity-based analysis and hierarchical clustering
of source schema elements. Affinity-based analysis represents the matching step: in a
hybrid manner it calculates the name, structural and global affinity coefficients exploit-
ing a common thesaurus. The common thesaurus is built with the help of ODB-Tools,
WordNet or manual input. It represents a set of intensional and extensional relationships
which depict intra- and inter-schema knowledge about classes and attributes of the in-
put schemas. Based on global affinity coefficients, a hierarchical clustering technique
categorizes classes into groups at different levels of affinity. For each cluster it creates
a set of global attributes - global class. Logical correspondence between the attributes
of a global class and source schema attributes is determined through a mapping table.
Artemis falls into the alignments as likeness clues category.

Cupid. Cupid [46] implements a hybrid matching algorithm comprising linguistic and
structural schema matching techniques, and computes similarity coefficients with the
assistance of a domain specific thesauri. Input schemas are encoded as graphs. Nodes
represent schema elements and are traversed in a combined bottom-up and top-down
manner. The matching algorithm consists of three phases and operates only with tree-
structures to which non-tree cases are reduced. The first phase (linguistic matching)
computes linguistic similarity coefficients between schema element names (labels)
based on morphological normalization, categorization, string-based techniques (com-
mon prefix, suffix tests) and a thesauri look-up. The second phase (structural matching)
computes structural similarity coefficients weighted by leaves which measure the sim-
ilarity between contexts in which elementary schema elements occur. The third phase
(mapping elements generation) computes weighted similarity coefficients and generates
final alignment by choosing pairs of schema elements with weighted similarity coeffi-
cients which are higher than a threshold. Referring to [46], Cupid performs somewhat
better overall, than the other hybrid matchers: Dike [58] and Artemis [13]. Cupid falls
into the alignments as likeness clues category.

COMA. COMA (COmbination of MAtching algorithms) [21] is a composite schema
matching tool. It provides an extensible library of matching algorithms; a framework
for combining obtained results, and a platform for the evaluation of the effectiveness
of the different matchers. Matching library is extensible, and as from [21] it contains 6
elementary matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them
implement string-based techniques (affix, n-gram, edit distance, etc.) as a background
idea; others share techniques with Cupid (thesauri look-up, etc.); and reuse-oriented is
a completely novel matcher, which tries to reuse previously obtained results for entire
new schemas or for its fragments. Schemas are internally encoded as DAGs, where
elements are the paths. This aims at capturing contexts in which the elements occur.
Distinct features of the COMA tool in respect to Cupid, are a more flexible architecture
and a possibility of performing iterations in the matching process. Based on the compar-
ative evaluations conducted in [20], COMA dominates Autoplex [6] and Automatch [7];
LSD [22] and GLUE [23]; SF [50], and SemInt [44] matching tools. COMA falls into
the alignments as likeness clues category.

NOM. NOM (Naive Ontology Mapping) [26] adopts the idea of composite matching
from COMA [21]. Some other innovations with respect to COMA, are in the set of

164 P. Shvaiko and J. Euzenat

elementary matchers based on rules, exploiting explicitly codified knowledge in on-
tologies, such as information about super- and sub-concepts, super- and sub-properties,
etc. At present the system supports 17 rules. For example, rule (R5) states that if super-
concepts are the same, the actual concepts are similar to each other. NOM also exploits
a set of instance-based techniques, this topic is beyond scope of the paper. The system
falls into the alignments as likeness clues category.

QOM. QOM (Quick Ontology Mapping) [25] is a successor of the NOM system [26].
The approach is based on the idea that the loss of quality in matching algorithms is
marginal (to a standard baseline), however improvement in efficiency can be tremen-
dous. This fact allows QOM to produce mapping elements fast, even for large-size
ontologies. QOM is grounded on matching rules of NOM. However, for the purpose of
efficiency the use of some rules have been restricted, e.g., R5. QOM avoids the complete
pair-wise comparison of trees in favor of a (n incomplete) top-down strategy. Exper-
imental study has shown that QOM is on a par with other state of the art algorithms
concerning the quality of proposed alignment, while outperforming them with respect
to efficiency. Also, QOM shows better quality results than approaches within the same
complexity class. The system falls into the alignments as likeness clues category.

OLA. OLA (OWL Lite Aligner) [30] is designed with the idea of balancing the contri-
bution of each component that compose an ontology (classes, properties, names, con-
straints, taxonomy, and even instances). As such it takes advantage of all the elementary
matching techniques that have been considered in the previous sections, but the seman-
tic ones. OLA is a family of distance based algorithms which converts definitions of
distances based on all the input structures into a set of equations. These distances are
almost linearly aggregated (they are linearly aggregated modulo local matches of enti-
ties). The algorithm then looks for the matching between the ontologies that minimizes
the overall distance between them. For that purpose it starts with base distance measures
computed from labels and concrete datatypes. Then, it iterates a fix-point algorithm un-
til no improvement is produced. From that solution, an alignment is generated which
satisfies some additional criterion (on the alignment obtained and the distance between
aligned entities). As a system, OLA considers the alignment as a solution to a clearly
stated optimization problem.

Anchor-PROMPT. Anchor-PROMPT [57] (an extension of PROMPT, also formerly
known as SMART) is an ontology merging and alignment tool with a sophisticated
prompt mechanism for possible matching terms. The anchor-PROMPT is a hybrid
alignment algorithm which takes as input two ontologies, (internally represented as
graphs) and a set of anchors-pairs of related terms, which are identified with the help
of string-based techniques (edit-distance test), or defined by a user, or another matcher
computing linguistic similarity, for example [49]. Then the algorithm refines them by
analyzing the paths of the input ontologies limited by the anchors in order to deter-
mine terms frequently appearing in similar positions on similar paths. Finally, based
on the frequencies and a user feedback, the algorithm determines matching candidates.
Anchor-PROMPT falls into the alignments as solutions and alignments as likeness clues
categories.

A Survey of Schema-Based Matching Approaches 165

S-Match. S-Match [32–34] is a schema-based matching system. It takes two graph-
like structures (e.g., XML schemas or ontologies) and returns semantic relations (e.g.,
equivalence, subsumption) between the nodes of the graphs that correspond semanti-
cally to each other. The relations are determined by analyzing the meaning (concepts,
not labels) which is codified in the elements and the structures of schemas/ontologies.
In particular, labels at nodes, written in natural language, are translated into proposi-
tional formulas which explicitly codify the label’s intended meaning. This allows for a
translation of the matching problem into a propositional unsatisfiability problem, which
can then be efficiently resolved using (sound and complete) state of the art propositional
satisfiability deciders. S-Match was designed and developed as a platform for seman-
tic matching, namely a highly modular system with the core of computing semantic
relations where single components can be plugged, unplugged or suitably customized.
It is a hybrid system with a composition at the element level. At present, S-Match li-
braries contain 13 element-level matchers, see [35], and 3 structure-level matchers (e.g.,
SAT4J [9]). S-Match falls into the alignments as theorems category.

Table 1. Characteristics of state of the art matching approaches

Element-level Structure-level
Syntactic External Syntactic Semantic

string-based (2); iterative fix-point
SF [50] data types; - computation -

key properties
common thesaurus (CT): matching

Artemis [13] domain compatibility; synonyms, of neighbors -
language-based (1) broader terms, via CT

related terms
string-based (2); auxiliary thesauri: tree matching

Cupid [46] language-based (2); synonyms, weighted by leaves -
data types; hypernyms,

key properties abbreviations
string-based (4); auxiliary thesauri: DAG (tree) matching

language-based (1); synonyms, with a bias towards
COMA [21] data types hypernyms, leaf or children structures (2); -

abbreviations; paths
alignment reuse (2)

NOM [26] string-based (1); application-specific matching of neighbors (2);
FOAM/QOM [25] domains and ranges vocabulary taxonomic structure (4) -

bounded paths matching
Anchor- string-based (1); - (arbitrary links); -

PROMPT [57] domains and ranges bounded paths matching
(processing is-a links separately)

string-based (3); iterative fix-point
OLA [30] language-based (1); WordNet(1) computation; -

data types matching of neighbors;
taxonomic structure

string-based (5); WordNet:
S-Match [33, 34] language-based (3); sense-based (2), - propositional SAT (2)

gloss-based (6)

Table 1 summarizes how the matching systems cover the solution space in terms of
the proposed classification. Numbers in brackets specify how many matchers of a par-
ticular type a system supports. For example, S-Match supports 5 string-based element-
level syntactic matchers (prefix, suffix, edit distance, n-gram, and text corpus, see [34]),

166 P. Shvaiko and J. Euzenat

OLA has one element-level external matcher based on WordNet. Table 1 also testifies
that schema/ontology matching research was mainly focused on syntactic and external
techniques so far. Semantic techniques have been exploited only by S-Match [33].

Having considered some of the recent schema-based matching systems, it is im-
portant to notice that the matching operation typically constitutes only one of the steps
towards the ultimate goal of, e.g., schema/ontology integration, web services integration
or meta data management. To this end, we would like to mention some existing infras-
tructures, which use matching as one of its integral components. Some examples are
Chimaera [49], OntoMerge [24], Rondo [51], MAFRA [47], Protoplasm [8]. The goal
of such infrastructures is to enable a user with a possibility of performing such high-
level tasks, e.g., given a product request expressed in terms of the catalog C1, return
the products satisfying the request from the marketplaces MP1 and MP2. Moreover,
use matching component M5, and translate instances by using component T 3.

7 Conclusions

This paper presents a new classification of schema-based matching approaches, which
improves the previous work on the topic. We have introduced new criteria which are
based on (i) general properties of matching techniques, i.e., we distinguish between
approximate and exact techniques; (ii) interpretation of input information, i.e., we
distinguish between syntactic, external, and semantic techniques at element- and
structure-level; and (iii) the kind of input information, i.e., we distinguish between
terminological, structural, and semantic techniques. We have reviewed some of the
recent schema/ontology matching systems in light of the classification proposed
pointing which part of the solution space they cover. Analysis of state of the art
systems discussed has shown, that most of them exploit only syntactic and external
techniques, following the input interpretation classification; or terminological and
structural techniques, following the kind of input classification; and only one uses
semantic techniques, following both classifications. However, the category of semantic
techniques was identified only recently as a part of the solution space; its methods
provide sound and complete results, and, hence it represents a promising area for the
future investigations.

The proposed classification provides a common conceptual basis, and, hence, can be
used for comparing (analytically) different existing schema/ontology matching systems
as well as for designing a new one, taking advantages of state of the art solutions. As
the paper shows, the solution space is quite large and there exists a variety of matching
techniques. In some cases it is difficult to draw conclusions from the classifications of
systems. A complementary approach is to compare matching systems experimentally,
with the help of benchmarks which measure the quality of the alignment (e.g., comput-
ing precision, recall, overall indicators) and the performance of systems (e.g., measuring
execution time, main memory indicators). We have started working on such an approach
and we have found useful our classifications for designing systematic benchmarks, e.g.,
by discarding features (one by one) from schemas/ontologies with respect to the classi-
fications we had (namely, what class of basic techniques deals with what feature), see

A Survey of Schema-Based Matching Approaches 167

for preliminary results the I3CON initiative2, Ontology Alignment Contest3 [69], and
Ontology Alignment Evaluation Initiative4.

Future work proceeds in at least three directions. The first direction aims at taking
into account some novel matching approaches which exploit schema-level information,
e.g., [1, 14, 38, 45, 54]. As it has already been mentioned, in some applications (e.g.,
agents communication, web services integration) there are no instances given before-
hand, and therefore, schema-based matching is an only solution for such cases. How-
ever, in the other applications (e.g., schema/ontology integration), instances are given
beforehand, and therefore, instance-based approaches should be considered as a part
of the solution space. Thus, the second direction of the future work aims at extending
our classification by taking into account instance-based approaches, e.g., [17, 23, 40].
Finally, the third direction aims at conducting an extensive evaluation of matching sys-
tems by systematic benchmarks and by case studies on the industrial size problems.

Acknowledgements. This work has been partly supported by the Knowledge Web
European network of excellence (IST-2004-507482).

References

1. Z. Aleksovski, W. ten Kate, and F. van Harmelen. Semantic coordination: a new approxima-
tion method and its application in the music domain. In Proceedings of the Meaning Coor-
dination and Negotiation workshop at the International Semantic Web Conference (ISWC),
2004.

2. D. Aumüller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology matching with
COMA++. In Proceedings of the International Conference on Management of Data (SIG-
MOD), Software Demonstration, 2005.

3. C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

4. H. W. Beck, S. K. Gala, and S. B. Navathe. Classification as a query processing technique
in the CANDIDE semantic data model. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 572–581, 1989.

5. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistructured and
structured data sources. SIGMOD Record, (28(1)):54–59, 1999.

6. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual databases. In
Proceedings of the International Conference on Cooperative Information Systems (CoopIS),
pages 108–122, 2001.

7. J. Berlin and A. Motro. Database schema matching using machine learning with feature
selection. In Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE), pages 452–466, 2002.

8. P. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-strength schema matching.
SIGMOD Record, (33(4)):38–43, 2004.

9. D. Le Berre. A satisfiability library for Java. http://www.sat4j.org/.
10. A. Borgida, R. Brachman, D. McGuinness, and L. Resnick. CLASSIC: A structural data

model for objects. SIGMOD Record, 18(2):58–67, 1989.

2 http://www.atl.external.lmco.com/projects/ontology/i3con.html
3 http://oaei.inrialpes.fr/2004/Contest/
4 http://oaei.inrialpes.fr/2005/

168 P. Shvaiko and J. Euzenat

11. P. Bouquet, J. Euzenat, E. Franconi, L. Serafini, G. Stamou, and S. Tessaris. D2.2.1: Specifi-
cation of a common framework for characterizing alignment. Technical report, NoE Knowl-
edge Web project delivable, 2004. http://knowledgeweb.semanticweb.org/.

12. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach and an
application. In Proceedings of the International Semantic Web Conference (ISWC), pages
130–145, 2003.

13. S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing of heteroge-
neous data sources. IEEE Transactions on Knowledge and Data Engineering, (13(2)):277–
297, 2001.

14. S. Castano, A. Ferrara, S. Montanelli, and G. Racca. Semantic information interoperability
in open networked systems. In Proceedings of the International Conference on Semantics of
a Networked World (ICSNW), in cooperation with ACM SIGMOD, pages 215–230, 2004.

15. Meta Data Coalition. Open information model, version 1.0. http://mdcinfo/oim/oim10.html,
August 1999.

16. W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string metrics for matching
names and records. In Proceedings of the workshop on Data Cleaning and Object Consol-
idation at the International Conference on Knowledge Discovery and Data Mining (KDD),
2003.

17. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), pages 383–394, 2004.

18. T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for principled match-
making in an electronic marketplace. In Proceedings of the World Wide Web Conference
(WWW), pages 321–330, 2003.

19. R. Dieng and S. Hug. Comparison of ”personal ontologies” represented through conceptual
graphs. In Proceedings of the European Conference on Artificial Intelligence (ECAI), pages
341–345, 1998.

20. H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In Pro-
ceedings of the workshop on Web and Databases, 2002.

21. H. H. Do and E. Rahm. COMA - a system for flexible combination of schema matching
approaches. In Proceedings of the Very Large Data Bases Conference (VLDB), pages 610–
621, 2001.

22. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data sources: A
machine-learning approach. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 509–520, 2001.

23. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map ontologies on the
semantic web. In Proceedings of the International World Wide Web Conference (WWW),
pages 662–673, 2003.

24. D. Dou, D. McDermott, and P. Qi. Ontology translation on the Semantic Web. Journal on
Data Semantics (JoDS), II:35–57, 2005.

25. M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of the International
Semantic Web Conference (ISWC), pages 683–697, 2004.

26. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In Proceedings of the
European Semantic Web Symposium (ESWS), pages 76–91, 2004.

27. J. Euzenat. An API for ontology alignment. In Proceedings of the International Semantic
Web Conference (ISWC), pages 698–712, 2004.

28. J. Euzenat, J. Barrasa, P. Bouquet, R. Dieng, M. Ehrig, M. Hauswirth, M. Jarrar, R. Lara,
D. Maynard, A. Napoli, G. Stamou, H. Stuckenschmidt, P. Shvaiko, S. Tessaris, S. van Acker,
I. Zaihrayeu, and T. L. Bach. D2.2.3: State of the art on ontology alignment. Technical report,
NoE Knowledge Web project delivable, 2004. http://knowledgeweb.semanticweb.org/.

A Survey of Schema-Based Matching Approaches 169

29. J. Euzenat and P. Valtchev. An integrative proximity measure for ontology alignment. In
Proceedings of the Semantic Integration workshop at the International Semantic Web Con-
ference (ISWC), 2003.

30. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In Proceedings
of the European Conference on Artificial Intelligence (ECAI), pages 333–337, 2004.

31. A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WordNet with DOLCE.
AI Magazine, (24(3)):13–24, 2003.

32. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering Review
Journal (KER), (18(3)):265–280, 2003.

33. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an implementation
of semantic matching. In Proceedings of the European Semantic Web Symposium (ESWS),
pages 61–75, 2004.

34. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. Technical Report
DIT-05-014, University of Trento, 2005.

35. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proceedings of
Meaning Coordination and Negotiation workshop at the International Semantic Web Con-
ference (ISWC), 2004.

36. F. Giunchiglia and I. Zaihrayeu. Making peer databases interact - a vision for an architecture
supporting data coordination. In Proceedings of the International workshop on Cooperative
Information Agents (CIA), pages 18–35, 2002.

37. N. Guarino. The role of ontologies for the Semantic Web (and beyond). Technical report,
Laboratory for Applied Ontology, Institute for Cognitive Sciences and Technology (ISTC-
CNR), 2004.

38. B. He and K. C.-C. Chang. A holistic paradigm for large scale schema matching. SIGMOD
Record, 33(4):20–25, 2004.

39. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge
Engineering Review Journal (KER), (18(1)):1–31, 2003.

40. J. Kang and J. F. Naughton. On schema matching with opaque column names and data
values. In Proceedings of the International Conference on Management of Data (SIGMOD),
pages 205–216, 2003.

41. V. Kashyap and A. Sheth. Semantic and schematic similarities between database objects:
a context-based approach. The International Journal on Very Large Data Bases (VLDB),
5(4):276–304, 1996.

42. J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attributed equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449–463, 1989.

43. M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the Symposium
on Principles of Database Systems (PODS), pages 233–246, 2002.

44. W. S. Li and C. Clifton. Semantic integration in heterogeneous databases using neural net-
works. In Proceedings of the Very Large Data Bases Conference (VLDB), pages 1–12, 1994.

45. J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-based schema matching. In
Proceedings of the International Conference on Data Engineering (ICDE), pages 57–68,
2005.

46. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Proceed-
ings of the Very Large Data Bases Conference (VLDB), pages 49–58, 2001.

47. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A MApping FRAmework for
Distributed Ontologies. In Proceedings of the International Conference on Knowledge En-
gineering and Knowledge Management (EKAW), pages 235–250, 2002.

48. A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceedings of the
International Conference on Knowledge Engineering and Knowledge Management (EKAW),
pages 251–263, 2002.

170 P. Shvaiko and J. Euzenat

49. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and test-
ing large ontologies. In Proceedings of the International Conference on the Principles of
Knowledge Representation and Reasoning (KR), pages 483–493, 2000.

50. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm. In Proceedings of the International Conference on Data Engineering (ICDE),
pages 117–128, 2002.

51. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic model
management. In Proceedings of the International Conference on Management of Data (SIG-
MOD), pages 193–204, 2003.

52. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperability between pre-existing on-
tologies. In Proceedings of the International Conference on Cooperative Information Sys-
tems (CoopIS), pages 14–25, 1996.

53. A. G. Miller. WordNet: A lexical database for English. Communications of the ACM,
(38(11)):39–41, 1995.

54. P. Mitra, N. Noy, and A. Jaiswal. OMEN: A probabilistic ontology mapping tool. In Proceed-
ings of the Meaning Coordination and Negotiation workshop at the International Semantic
Web Conference (ISWC), 2004.

55. I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings of the International
Conference on Formal Ontology in Information Systems (FOIS), pages 2–9, 2001.

56. N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution. Knowledge
and Information Systems, 2002.

57. N. Noy and M. Musen. Anchor-PROMPT: using non-local context for semantic matching.
In Proceedings of the workshop on Ontologies and Information Sharing at the International
Joint Conference on Artificial Intelligence (IJCAI), pages 63–70, 2001.

58. L. Palopoli, G. Terracina, and D. Ursino. The system DIKE: Towards the semi-automatic
synthesis of cooperative information systems and data warehouses. In ADBIS-DASFAA, Mat-
fyzpress, pages 108–117, 2000.

59. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web services
capabilities. In Proceedings of the International Semantic Web Conference (ISWC), pages
333–347, 2002.

60. C. Parent and S. Spaccapietra. Database integration: the key to data interoperability. In
M. P. Papazoglou, S. Spaccapietra, and Z. Tari, editors, Advances in Object-Oriented Data
Modeling. The MIT Press, 2000.

61. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Cybernetics, (19(1)):17–30, 1989.

62. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. The
International Journal on Very Large Data Bases (VLDB), (10(4)):334–350, 2001.

63. E. Rahm, H. H. Do, and S. Maßmann. Matching large XML schemas. SIGMOD Record,
33(4):26–31, 2004.

64. P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
448–453, 1995.

65. D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and graph
searching. In Proceedings of the Symposium on Principles of Database Systems (PODS),
pages 39–52, 2002.

66. A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Computing Surveys, 22(3):183–236, 1990.

67. P. Shvaiko. A classification of schema-based matching approaches. In Proceedings of the
Meaning Coordination and Negotiation workshop at the International Semantic Web Con-
ference (ISWC), 2004.

A Survey of Schema-Based Matching Approaches 171

68. A. Sotnykova, C. Vangenot, N. Cullot, N. Bennacer, and M.-A. Aufaure. Semantic map-
pings in description logics for spatio-temporal database schema integration. Journal on Data
Semantics (JoDS), Special Issue on Semantic-based Geographical Information Systems, III,
2005.

69. Y. Sure, O. Corcho, J. Euzenat, and T. Hughes. Evaluation of Ontology-based Tools. Pro-
ceedings of the International Workshop on Evaluation of Ontology-based Tools (EON), 2004.
http://CEUR-WS.org/Vol-128/.

70. M. Uschold and M. Gruninger. Ontologies and semantics for seamless connectivity. SIG-
MOD Record, 33(4):58–64, 2004.

71. P. Valtchev. Construction automatique de taxonomies pour l’aide à la représentation de
connaissances par objets. Thèse d’informatique, Université Grenoble 1, 1999.

72. P. Valtchev and J. Euzenat. Dissimilarity measure for collections of objects and values.
Lecture Notes in Computer Science, 1280:259–272, 1997.

73. R. van Eijk, F. de Boer, W. van de Hoek, and J. J. Meyer. On dynamically generated ontology
translators in agent communication. International Journal of Intelligent System, 16:587–607,
2001.

74. Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing and querying data transforma-
tions. In Proceedings of the International Conference on Data Engineering (ICDE), pages
81–92, 2005.

75. H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hueb-
ner. Ontology-based integration of information - a survey of existing approaches. In Pro-
ceedings of the workshop on Ontologies and Information Sharing at the International Joint
Conference on Artificial Intelligence (IJCAI), pages 108–117, 2001.

76. L. Xu and D. W. Embley. Using domain ontologies to discover direct and indirect matches for
schema elements. In Proceedings of the Semantic Integration workshop at the International
Semantic Web Conference (ISWC), 2003.

77. K. Zhang and D. Shasha. Approximate tree pattern matching. In A. Apostolico and Z. Galil,
editors, Pattern matching in strings, trees, and arrays, pages 341–371. Oxford University,
1997.

An Overview and Classification of Adaptive
Approaches to Information Extraction

Christian Siefkes1,2 and Peter Siniakov1

1 Database and Information Systems Group, Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany

siefkes@inf.fu-berlin.de, siniakov@inf.fu-berlin.de
2 Berlin-Brandenburg Graduate School in Distributed Information Systems�

Abstract. Most of the information stored in digital form is hidden in
natural language texts. Extracting and storing it in a formal representa-
tion (e.g. in form of relations in databases) allows efficient querying, easy
administration and further automatic processing of the extracted data.
The area of information extraction (IE) comprises techniques, algorithms
and methods performing two important tasks: finding (identifying) the
desired, relevant data and storing it in appropriate form for future use.

The rapidly increasing number and diversity of IE systems are the
evidence of continuous activity and growing attention to this field. At
the same time it is becoming more and more difficult to overview the
scope of IE, to see advantages of certain approaches and differences to
others. In this paper we identify and describe promising approaches to IE.
Our focus is adaptive systems that can be customized for new domains
through training or the use of external knowledge sources. Based on
the observed origins and requirements of the examined IE techniques a
classification of different types of adaptive IE systems is established.

1 Introduction

1.1 Information Extraction

There are things unique to humans that astonish and fascinate at the same time.
One of them is the human language, admirable for its richness, complexity and
ability to adapt to different cultural and social environments. But as valuable
from cultural and aesthetic point of view human language is as challenging it is to
grasp it scientifically, to formalize and make it manifest for computer processing.
Information extraction (IE) builds the bridge between the evolutionary aspects
of language development and the algorithmic approach to language. IE is one
of the most promising efforts to exploit computational capabilities, accurateness
and correctness of machines for accomplishing elaborate, often tedious task of
searching for, analyzing and identifying desired information.

� The work of this author is supported by the German Research Society (DFG grant
no. GRK 316).

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 172–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Overview and Classification of Adaptive Approaches to IE 173

Most of the information stored in digital form is hidden in natural language
texts. Extracting and storing it in a formal representation (e.g. in form of rela-
tions in databases) allows efficient querying and easy administration of the ex-
tracted data. Moreover, information stored and queried in a canonical way can be
processed and interpreted by computers without human interaction; it can serve
for establishing ontologies, creation of knowledge bases and data analysis.

The area of IE comprises techniques, algorithms and methods performing
two important tasks: finding (identifying) the desired, relevant data and storing
it in appropriate form for future use. The notion of fact extraction is often used
interchangeably with the notion of IE. The goals of fact extraction, however,
are typically more specific and according to them fact extraction can be defined
as the transformation of facts expressed in natural language to a given, formal,
properly defined target structure. Fact extraction can therefore be regarded as a
subset of IE extraction focusing on more rigidly structured representation forms.

1.2 Related Areas

A precursor of information extraction was the field of text understanding (or
message understanding) which had the more ambitious aim of completely repre-
senting the contents of texts. To stimulate research in this area was the original
goal of the Message Understanding Conferences (MUC) held from 1987 through
1998 under the auspices of the US government (ARPA/DARPA).

The term text mining (TM) is sometimes used almost synonymously to IE.
It also denotes the application of data mining techniques to text with the goal
of generating new knowledge by finding unknown patterns. TM in this second
meaning aims farther than IE, which does not try to generate new knowledge,
but only to represent facts explicitly expressed in a text in a more formal struc-
ture. But IE can be used as a first step in text mining, by extracting facts from
the unstructured text to a database or other structured representation. In a sec-
ond step, usual data mining techniques can be applied to the resulting database
structure to discover interesting relationships in the data. This approach is uti-
lized by [39].

IE and the better established field of information retrieval (IR) which locates
relevant texts can be combined in various ways. IR can be used to select relevant
documents for further analysis by IE. On the other hand, the structure filled by
IE can also be utilized for more flexible IR (using a structured query language
like SQL). Thus IE might be useful as a preparatory step for information retrieval
as well as for postprocessing.

1.3 Goals and Evaluation Criteria

The history of IE as an independent field of research began in the 1980s as a num-
ber of academic and industrial research institutions were working on extracting
information from naval messages in projects sponsored by the U.S. navy. After
establishing of the Message Understanding Conference for comparing the perfor-
mance of IE systems, information extraction experienced rapid growth extending

174 C. Siefkes and P. Siniakov

its applications to new domains and employing diverse new techniques. Origi-
nally consisting of handcrafted rule-based systems, the spectrum of IE meth-
ods has been continuously enriched by systems applying statistical and learning
methods. Now it ranges from classical pattern-oriented systems over numerous
combinations of different AI and statistical methods to rather new approaches
such as wrapper induction.

The rapidly increasing number and diversity of IE systems are the evidence
of continuous activity and growing attention to this field. At the same time it is
becoming more and more difficult to overview the scope of IE, to see advantages
of certain approaches and differences to others. Furthermore it is hard to estimate
what the development perspective of IE is, what ideas are promising and where
the focus of IE will be in the future.

In this paper we identify and describe promising approaches to IE. Our focus
is adaptive systems that can be customized for new domains by training or the
use of external knowledge sources. Handcrafted systems that can only be adapted
by elaborate rewriting are not considered. According to the observed origins and
requirements of the examined IE techniques, a classification of different types
of adaptive IE systems is established. The classification is significantly based on
the essential methods and resources used for extraction such as learning tech-
niques and models and central features. Therefore the approaches that belong
to different classes are not necessarily completely orthogonal to each other since
some techniques and features are not exclusive to an approach (e.g. rule-based
approaches may use some statistical techniques for solving some subtasks in the
extraction algorithm).

Since the number of existing systems is considerably large it will not be pos-
sible to provide a detailed description of each system. Instead we select systems
that distinctly represent directions of research without focusing on details of the
systems. However, features of systems are identified that are common for the
approach they pursue. Table 1 lists the regarded systems and the approaches
they represent.

We distinguish three main classes: rule learning, knowledge-based and sta-
tistical approaches. In Sec. 3–5 the approaches are presented according to the
classification so as related subclasses are discussed in the common context. To
make the analysis of different approaches more systematic and establish a com-
mon base for their comparison and correlation we consider several qualitative
criteria.

Used methods and algorithms: We focus on how relevant content is identi-
fied in texts and what techniques are used to match it to the target structure.
Learning capabilities, learning models, the amount and role of human inter-
action are analyzed to infer advantages and weaknesses of the approach.
These aspects form the basis of our classification and are mainly discussed
in Sec. 3–5 where the different types of approaches are presented.

Input and output features: Input characteristics involve the prerequisites
that the processed texts should fulfill and requirements on used resources.
These characteristics affect the domains where approaches can be employed

An Overview and Classification of Adaptive Approaches to IE 175

Table 1. Overview of the Selected Approaches and Systems

Approach System(s) Section

Rule Learners

Pattern & Template [40] 3.1
Creation [11]

[44]

Covering Algorithms Crystal [56, 52] 3.2
Whisk [54]
(LP)2 [9, 10]

Relational Rapier [4, 5] 3.3
SRV [21]

Case-based [6] 3.4

Wrapper Induction Stalker [37, 38] 3.5
BWI [22]

Hybrid (Decision Trees) IE2 [1] 3.6

Knowledge-based Approaches

Horn Clauses TANKA/MaLTe [13] 4.1

Ontology-based [15] 4.2

Thesaurus-based TIMES [2, 7] 4.3

Statistical Approaches

Probabilistic Parsing SIFT [35, 36] 5.1

Hidden Markov Models Active HMMs [48, 49] 5.2
Stoch. Optimization [23, 24]
(C)HHMMs [51]

Conditional Markov Models MEMMs [33] 5.3
& Random Fields CRF [28, 34]

Token Classification MaxEnt [8] 5.4
MBL [59]
TIE [50]
ELIE [18, 19]

Fragment Classification & SNoW-IE [46, 47] 5.5
Bayesian Networks BIEN [41]

(application range) and how easily they can be adapted to new domains and
resources (adaptability). It is examined how much preparatory work and
linguistic preprocessing is necessary, whether morphological and syntactic
analysis is presupposed etc. Another important factor is whether the ap-
proaches rely on external resources such as semantic resources (e.g. thesauri
or ontologies).
Output features define the accomplished tasks—which IE tasks have been
solved completely or partially. We consider whether single attributes of target
structure can be identified in text (single slot extraction) or complex facts
consisting of several attributes (template unification) can be found. A résumé
over these characteristics is given in Sec. 6.

The description of a single approach features its analysis with respect to the
proposed criteria, which is summarized at the end of the description. Sometimes

176 C. Siefkes and P. Siniakov

criteria are omitted if they are not applicable. The universally applicable criteria
concerning input requirements and considered features, learning characteristics
and accomplished tasks are used for comparison of different approaches in Sec. 6
and allow conclusions about important differences between the identified classes
of approaches in IE.

Considering the quantitative metrics precision, recall and F-measure isolated
from the testing environment may be misleading since they depend a lot on the
complexity of the target structure and training texts. Quantitative parameters
are meaningful only if the systems are tested in comparable environments, with
the same text corpus and target structure. Section 6.5 discusses quantitative
comparisons and evaluation results on two standard corpora.

2 Architecture of a Typical IE System

A typical trainable IE system follows a pipeline architecture that comprises lin-
guistic preprocessing, learning and application stage and, during the application
phase, semantic postprocessing as the three main blocks (Fig. 1). Each of them
handles a subset of steps that are particularly relevant for a pursued approach.

A text corpus including texts of the application domain and a target structure
defining what the relevant information is constitute the minimum input for an IE
system. Besides, it can be supported by additional semantic resources provided
by a human.

Preprocessing of Input Texts: Text corpora often consist of unstructured,
“raw” natural language texts. A big part of the relevant information can be
distinguished by some regularity found in the linguistic properties of texts.
Thus linguistic analysis can give helpful hints and determine important fea-
tures for identifying relevant content. Following linguistic components proved
to be useful for information extraction:
Tokenization: Starting with a sequence of characters the goal is to identify

the elementary parts of natural language: words, punctuation marks and
separators. The resulting sequence of meaningful tokens is a base for
further linguistic and any text processing.

Sentence Splitting: Sentences are one of the most important elements of
the natural language for structured representation of the written con-
tent. Binding interrelated information they are the smallest units for ex-
pression of completed thoughts or events. The correct recognition of the
sentence borders is therefore crucial for many IE approaches. The task
would be trivial if the punctuation marks were not ambiguously used.
Correct representation of a text as a sequence of sentences is utilized for
syntactic parsing.

Morphological Analysis: Certain facts are typically expressed by certain
parts of speech (e.g. names). Determining parts of speech of tokens is
known as POS tagging. Statistical systems can use POS tags as clas-
sification features, rule-based systems as elements of extraction rules.

An Overview and Classification of Adaptive Approaches to IE 177

Fig. 1. Architecture of a Typical IE System

Segmentation of compounds, recognition of flection forms and consecu-
tive normalization disclose further important morphological features.

(Chunk) Parsing: While full sentence parsing is preferred by knowledge-
based systems, some statistical approaches rely on chunk parsing—
shallow syntactic analysis of the sentence fragments performed on phrasal
level. It is justified by the fact that the extracted information is often
completely included in a noun, verb or prepositional phrase that build
the most relevant context for its recognition.

Named Entity Recognition, Coreference Resolution: Named enti-
ties are one of the most often extracted types of tokens. Some approaches
use a simple lookup in predefined lists (e.g. of geographic locations,
company names), some utilize trainable Hidden Markov Models to
identify named entities and their type. Coreference resolution finds
multiple references to the same object in a text. This is especially
important because relevant content may be expressed by pronouns and
designators (“she held a seminar”, “The company announced”). Both

178 C. Siefkes and P. Siniakov

tasks require deeper semantic analysis and are not as reliable as other
linguistic components.
While for knowledge-based and some rule-based systems linguistic pre-
processing is an element of the core system, for statistical and other
rule-based approaches it is optional but can have a serious impact on
the quality of extraction.

Learning and Application of the Extraction Model: The application
range of today’s IE systems is intended to be as wide as possible. The
features of a concrete domain cannot be hardwired in a system since the
adaptation effort to other domains is too high. Modern systems use a
learning component to reduce the dependence on specific domains and
to decrease the amount of resources provided by human. An extraction
model is defined according to the pursued approach and its parameters are
“learned” (optimized) by a learning procedure. Statistical approaches learn,
for example, relevant classification features, probabilities, state sequences,
rule-based approaches learn a set of extraction rules and knowledge-based
approaches acquire structures to augment and interpret their knowledge for
extraction. The challenge is to find an extraction model that allows learning
all relevant domain parameters using the same extraction framework for
each application domain.
Considering the problems and complexity of IE, supervised learning appears
to be the most appropriate and is the most widely used learning technique.
The majority of approaches prefer annotated training corpora albeit some
rely on human supervision during the learning stage. To assess the quality
of an approach the training text corpus is created by annotating text frag-
ments that contain relevant content and divided into two parts. One part,
the training set, is used for training (learning the parameters of the extrac-
tion model) and another, the test set, is used to test the ability of the model
to correctly extract new information it was not trained on. The test results
can also be used to improve the extraction model to perform better on new
domain texts when applied to real domain texts.
Some approaches allow further refinement of an extraction model based on
the human feedback about extractions during the application. The new eval-
uated extractions can be incorporated as new training instances and the
model can be retrained.
The learning component is crucial for an IE system, because it comprises
the algorithms for identification of relevant text parts and transferring them
according to the target structure.

Postprocessing of Output: The main motivation for IE is the structured rep-
resentation of information that enables formal queries and automatic pro-
cessing. One of the possibilities to structure the extracted data is to model
the target structure as a database relation. After the relevant information has
been found by application of the extraction model the identified text frag-
ments are assigned to the corresponding attributes of the target structure.
They can normalized according to the expected format (e.g. representation
of dates and numbers). Some identified facts may appear in text more than

An Overview and Classification of Adaptive Approaches to IE 179

once or already exist in the database. In this case, different instances could
be merged (instance unification). Finally, the identified, normalized and uni-
fied information is stored at the appropriate relation in the database. Most
current trainable systems do not yet perform much preprocessing, leaving
such tasks as future work.

3 Rule-Learning Approaches

3.1 Automatic Pattern and Template Creation

To overcome some serious limitations of classical rule-based approaches, alter-
native techniques have been developed that reduce the manual effort and the
amount of human knowledge used for the creation of extraction rules. In the
optimal case the rules are determined automatically after the information about
data to be extracted has been provided. Automatic acquisition of linguistic pat-
terns and templates partially performs this task constructing the left-hand side of
the rule and the target structure respectively. It is noteworthy that this approach
does not presuppose a fix given target structure, in fact, the target structure is
determined dynamically using provided semantic information. Therefore meth-
ods described below do not belong to the scope of fact extraction, but certainly
comprise one substantial direction of IE. As representatives for this approach
Nobata and Sekine’s system for pattern acquisition [40], a method for template
creation proposed by Collier [11] and a successor of AutoSlog-TS that accom-
plishes both tasks [44] are considered.

To compensate the lack of human interaction, syntactic and lexical resources
should be provided that sufficiently cover word semantics and disclose necessary
domain information. Therefore preclassified text corpora (Riloff) or reliable IR
technology (Collier), a thesaurus or keyword list, part-of-speech (POS) tagger
(Nobata) and named entity recognizer are required. Moreover shallow parsing is
needed for syntactic analysis. Riloff’s system is supported by a list of categories
with five seed words in each for the creation of semantic lexicon and by a set
of template slots (roles) mapped to corresponding categories. In all systems hu-
man inspection of intermediary or final results serves for quality assurance and
learning purposes.

Pattern acquisition: Methods for automatic pattern acquisition have in com-
mon that the acquired patterns have a simple syntactic structure and the final
set is selected from a large amount of initial candidate patterns iteratively us-
ing heuristics and statistical methods. The accent of Nobata’s system lies on
finding patterns describing certain events—an overview of the process is given
in Fig 2. Actual information extraction is a direct mapping of ordered lexical
items matching acquired pattern to fix template slots. Patterns are acquired
by consecutive selection of text fragments and final merging of ordered lexical
items in similar sentences. Articles are retrieved by scenario relevant keywords
from a large untagged corpus, which are filtered by subject line. Selected articles
are POS-tagged and named entities (NE) are recognized. Every sentence in the

180 C. Siefkes and P. Siniakov

Fig. 2. Overview of Nobata’s algorithm (from [40])

selected articles is regarded as initial pattern. Final patterns are acquired by
merging lexical items and named entities of two similar sentences. Sentences are
considered similar if they have the smallest amount of different items. Merging
is facilitated by either ignoring extra items of one of the patterns or creating
clusters of different items of both patterns. The merging process is repeated iter-
atively until the biggest possible generalization is achieved. In a later work [57]
a tree representation for patterns is proposed to better account for dependency
structures of syntactic patterns and to cope with the problem of free word order.

Riloff’s system uses AutoSlog-TS for the generation of patterns [43]. It is
guided by an assumption that the items to be extracted are comprised by noun
phrases, therefore it uses heuristics to create linguistic patterns that represent
relevant context for extracting of a given noun phrase (NP). These should be
general enough to extract other relevant NPs as well. Typical patterns would
be <subject> exploded; exploded in <noun-phrase>. They are activated by a
keyword and information to be extracted is contained in a syntactic constituent
of the pattern clause. In the first stage patterns are generated that collectively
extract every noun phrase from the training text. In the second stage their
relevance in the examined domain is estimated and a ranking of patterns is
produced. The pattern score depends on the number of extracted NPs also found
in semantic lexicon for examined domain and on their percentage among all
extracted NPs. After human review the best patterns are selected to extract
relevant information.

Template generation: The idea of generating target structure automatically may
appear somewhat surprising since humans are primarily interested in and deter-
mine what should be extracted. However, it is motivated by the fact that the
number of templates can be considerably large and therefore difficult to manage.
Generation of templates is guided by semantic constraints provided to the system
in form of categorization of domain entities in a semantic lexicon or thesaurus.

Riloff’s system [44] constructs the semantic lexicon taking only a list of cat-
egories with five seed entries as input. Context of the seed words is regarded for

An Overview and Classification of Adaptive Approaches to IE 181

each category and the words in context are scored. The score is basically the
conditional probability that the word appears in category context. The top five
are added to the category list and the process is continued iteratively. After sev-
eral iterations a user corrects the list and approves the lexicon. After acquisition
of patterns described above and lexicon creation semantic profiles of patterns
are established. The correlation between a pattern and a domain category (se-
mantic preference) is expressed based on extracted items. Therefore patterns
are applied to relevant domain texts and assigned to categories depending on
extracted NPs. These assignments serve later as constraints for the assignment
of extracted items to template roles.

Another important source of semantic information provided by the user is the
functional dependency between semantic categories and domain roles (template
slots). It is based on a reasonable assumption that members of a category can
fulfill only one role but one role can be fulfilled by entities of several categories.
During extraction the role is assigned according to the semantic preferences
(prevalent semantic categories of extracted items) determined earlier. A pattern
can extract words of different categories and thus different roles. The presented
patterns have a serious limitation extracting only one syntactic constituent and
filling therefore only one template slot. To consolidate scattered information
patterns that share the same trigger word and compatible syntactic constraints
are merged into single pattern. Such a generalized pattern is able to extract items
of several roles and creates a multi-slot template as the result of extraction. Hence
templates are not fix but can comprise any subset of the set of roles. Giving the
system the set of roles only sketches the scope of possible target structure while
its actual creation is based on described algorithms.

Collier’s approach proposes template creation on a pretty general level using
syntactic information and statistical techniques. It identifies three types of in-
formation contained in texts, which are relevant for template creation: objects,
their interactions and features. Named entities are considered as important ob-
jects and the assumption is made that fundamental objects can be found in every
relevant domain text. Their identification can be facilitated by existing NE rec-
ognizers. Coreferences can be another source for object recognition. Interactions
are expressed by verb/subject/object relationships on sentence level. Consider-
ing the categories of verbs (obtained from a thesaurus) classes of relationships
can be established. Such a class would correspond to a template while features
would be mapped to template slots. Relevant features can be found by looking on
entities occurring not in every document, consulting thesauri, analyzing n-grams
and collocations and using other statistical methods.

The main advantage of automatic creation of patterns and templates is obvi-
ous just by looking at the name of this approach. Provided with initial domain
and semantic information, the described algorithms solve the problem of IE by
generating patterns and templates and partially also extraction mechanisms.
The algorithms include no or occasional human interaction and rather small hu-
man support involving basically review of obtained results. There is not much
pre-processing and additional resources required for this approach, no deep syn-

182 C. Siefkes and P. Siniakov

tactic analysis is necessary. Many subtasks (e.g. creating patterns and semantic
lexicon) are solved using robust statistical methods. Generally, presented ap-
proach achieves successful results using quite simple comprehensive techniques.

Due to automatic processing researchers restricted the syntactic structure
of patterns to be very simple, which is a serious limitation since many relevant
facts are expressed in a complex linguistic context with complicated syntactic
structure. Facts expressed over multiple sentences remain uncovered. Therefore
such patterns cannot be applied to every domain. Since human influence during
the runtime is very restricted, the quality of final results depends very much
on the quality of semantic information provided at the beginning. Especially
the demands on domain specification by categories and roles have to be very
detailed and precise. Because of functional dependency between a semantic cat-
egory and a role wrong slots may be generated, which leads to an adulterated
target structure. Another big problem is unknown words (not occurring in the
training texts) since heuristics are necessary to decide which role to assign. Addi-
tionally, Nobata’s system suffers from the choice of sentences based on keywords
that may fail because of noise or polysemous keywords. Besides, generalization of
patterns is quite limited since, while matching a pattern, clusters of items have
to be searched for a matching element, which corresponds to matching against
many patterns. Collier’s assumption that relevant objects occur in all documents
is also very arguable.

Generally, this approach can be applied to domains and languages where de-
sired information is expressed by facts with simple syntactic structure. Although
the described techniques are primarily designed for information extraction other
areas involved in creation of lexical resources or translation may use them to
solve related tasks. This approach is promising because of its main advantage,
many weaknesses are not inherent and can be overcome in the future.

3.2 Covering Algorithms

A number of IE systems are based on covering (separate-and-conquer) algorithms
[25], a special type of inductive learning. These systems require a predefined
target structure, they do not create it. Except for Whisk, which employs active
learning, they also require a set of fully tagged training texts where all text
fragments that fill a certain slot in the target structure are marked. Based on this
input, the systems learn rules that extract the tagged slot fillers. After learning
rules that cover a part of the training instances, they remove (separate) these
instances from the training set and continue to learn rules that cover (conquer)
some of the remaining instances, looping until all or most of the training instances
are covered. What is regarded as an instance and which features are considered
depends on the system.

Crystal: Crystal [56, 52] builds on a chunk parser that identifies syntactic con-
stituents (subject, verb phrase, direct and indirect object, prepositional phrases)
and a domain-specific dictionary that specifies semantic classes for all words.
Crystal looks for constituents that fit predefined conceptual types (e.g. diagno-

An Overview and Classification of Adaptive Approaches to IE 183

sis, symptom) and subtypes (a diagnosis is either confirmed, ruled-out, suspected,
pre-existing, or past).

The definitions learned to extract subtypes identify a constituent to extract if
certain constraints are fulfilled by the surrounding constituents. Constraints may
test for word sequences contained in a phrase or for semantic classes of the head
noun or a modifier of a phrase. For example, an “absent symptom” is extracted
from the direct object if the head of the direct object is of the class [Sign or
Symptom], the verb is “denies” in the active voice, and the subject includes the
word “patient” and has the head class [Patient or Disabled Group]. Negative
constraints are not supported.

In a later work [55], the problem of negation is solved by learning different
kinds of semantic relations (classes) in a predefined order. Rules for “absent . . . ”
are learned (and applied) first. The examples covered by these rules are removed
prior to learning rules for “present . . . ”. Thus specialized rules like verb group
includes “not observed” can be learned for the absent case, and general rules like
verb group includes “observed” for the present case (without a predefined order
this is not possible, because the general rule covers both cases).

Crystal learns suitable definitions by generalization, i.e. bottom-up: each
training instance is used as a highly constrained initial definition. Crystal tries to
unify “similar”definitions by relaxing constraints. The similarity metric is based
on the number of constraint changes necessary to unify definitions.

Two definitions are unified by finding the most restrictive constraints that
cover both. For semantic class constraints the most specific common ancestor in
the semantic hierarchy is used; for word constraints the subset of words contained
in both constraints is kept. If there is no common ancestor or the subset is empty,
the constraint is dropped. The new definition replaces the original ones if the
number of false positives it extracts is below a defined error threshold—increasing
this threshold results in higher recall at the cost of precision (and vice versa).

For multi-slot extraction Crystal treats each subset of slot combinations as
a concept to be learned—this can result in data sparseness. Crystal does not
extract exact phrases, it only identifies a constituent to extract from. These are
the major limitations of the system.

Whisk: The Whisk system developed later by the same author [54] is aimed
at handling a larger range of texts, from free texts as found in newspapers and
books to semi-structured texts (often ungrammatical or in “telegram style”) that
are common on the World Wide Web or in advertisements.

Whisk is targeted at multi-slot extraction at the sentence level. The learned
rules are a kind of regular expressions. Expression pattern can contain verbatim
text, character classes (e.g. digit, number), and wildcards like “*” which lazily
skips any characters until the next part of the pattern can match. In addition
to the hard-wired character classes, semantic classes of equivalent terms can be
defined by the user, e.g. a class Bdrm that contains different forms and abbrevia-
tions of the term “bedroom.”Parentheses indicate a phrase to be extracted. The
Output part of a rule specifies where to store the extracted phrases. “Pattern:: *

184 C. Siefkes and P. Siniakov

(Digits) Bdrm * ‘$’ (Number). Output:: Rental {Bedrooms $1} {Price $2}.”
is a rule to extract the number of bedrooms and the price from a rental ad.

When processing free (grammatical) text, each sentence is split into the fields
returned by the chunk parser (subject, verb etc.); these fields can be specified
in the regular expressions to constrain matching (but still the whole expression
must match left to right, so the ordering of fields matters). Additional semantic
classes are defined that match the output of a named entity recognizer (person,
company etc.).

Rules are derived top-down (starting with the most general rule) by a covering
algorithm. For judging the quality of rules, Whisk uses the Laplacian expected
error: Laplacian = e+1

n+2 , where n is the number of extractions made and e is the
number of errors among these. In case of a tie, the more general rule is used.
The found rules might not be optimal due to the limitations of hill climbing—
each specialization is evaluated in isolation, so if two specializations (adding
two terms) must be applied together to yield a better rule (according to the
Laplacian), they will not be found.

Whisk incorporates active learning, so only a small part of the training corpus
needs to be tagged in advance. The system proceeds by selecting three kinds of
untagged instances for hand-tagging by the user: instances covered by a rule
(which will either increase the support of the rule or force further refinement),
“near misses” (to check and adapt the boundaries of rules), and a random sample
of instances not covered by any rule (to check whether there are still rules to
discover).

A disadvantage is that semantic classes must be predefined by the user, they
are not learned by the system. Another drawback is the strict ordering con-
straints of each rule—different rules must be learned for each possible arrange-
ment of slots.

(LP)2: (LP)2 [9] learns rules to add SGML/XML tags to a text. (LP)2 is based
on tagging rules that insert a single (starting or ending) SGML tag into the text.
This means that the task of each rule is to recognize the start or the end of a
supposed slot filler in the text, not to extract/tag a whole slot filler (or several
slot fillers) at once, as in most other systems.

The tagging rules are learned from the hand-tagged training corpus. Rules
are learned bottom-up, taking an instance as an initial rule whose constraints
are subsequently relaxed (e.g. requiring only a lexical class instead of a specific
word) or completely dropped. The k best generalizations of each initial rule
found by a beam search are stored in a “best rules pool.” As (LP)2 is a covering
algorithm, the training instances covered by a rule in this pool are removed from
the training set.

(LP)2 proceeds in four steps:

1. The tagging rules from the “best rules pool” are applied.
2. Contextual rules are applied to resulting text. These are tagging rules whose

overall reliability was not high enough for the best rules pool but that per-
form better when restrained to the vicinity of tags inserted in the first step

An Overview and Classification of Adaptive Approaches to IE 185

(for example, a rule that inserts an end tag is applied provided that a corre-
sponding start tag occurred some words before).

3. Correction rules do not add or delete tags, they only change the position of
a tag, moving it some words forward or backward.

4. Finally, invalid markup (unclosed tags etc.) is deleted in a validation step.

In the Amilcare system, (LP)2 is employed in a “LazyNLP” setting where the
amount of utilized linguistic information can be dynamically adjusted [10]. The
learner initially induces rules without any linguistic knowledge; then it iterates
adding linguistic information (provided by third-party components), stopping
when the effectiveness of the generated rules no longer increases. The adequate
amount of linguistic input is learned for each type of slot separately (e.g. rec-
ognizing a person name might require more NLP input than recognizing a date
or time).

(LP)2 is targeted at slot filling and does not perform any template unifica-
tion. In Amilcare a shallow discourse representation module is added for this
purpose [26, Sec. 5]. Slot fillers are unified in templates or subtemplates with
the nearest preceding slot fillers of a suitable type. E.g. when describing hotels,
address data and room types (single room, double room) will be attached to the
last mentioned hotel; price information might in turn be attached to the last
mentioned room type.

3.3 Relational Rule Learners

The basic approach of the systems presented in this section is similar to those
of the previous section—indeed, they are based on covering algorithms too. The
main difference is that the systems presented here explicitly take relations—
especially positional relations—between a (potentially unlimited) number of fea-
tures into account, while those in the previous section are limited to predefined
(finite) combinations of features.

Rapier: The Rapier [4, 5] system uses syntactic (POS tags) and semantic (Word-
Net classes) information to induce rules for slot fillers. Each rule consists in three
parts, a pre-filler pattern, a pattern for the actual slot filler and a post-filler pat-
tern. Each pattern contains an ordered list (whose length might be zero for
pre/post-fillers) of constraints that restrict the POS tag, the semantic class,
and/or the word itself (disjunctions are allowed). Instances are most specific
rules with all their constraints set. The pre- and post-filler patterns of instances
contain every word from the start resp. to the end of the document, there is no
“context window” of limited length.

New rules are created by randomly selecting two rules and creating the least
general generalization for the filler pattern. Actually, there are several reasonable
generalizations (different values of a constraint can be disjuncted or the con-
straint can be simply dropped), so each of these generalizations is re-specialized
by adding generalized pieces of the pre- and post-filler patterns of the original
rules. A list of n best candidates is kept until the best generalization is found,
based on the evaluation metric

186 C. Siefkes and P. Siniakov

ruleVal = − log2

(
p + 1

p + n + 2

)
+

ruleSize
p

,

where p is the number of correct extractions and n the number of erroneous
extractions; ruleSize is calculated depending on the number of pattern items,
lists, and disjuncts in a rule.

Semantic classes are generalized by finding the nearest common ancestor in
the WordNet hypernym hierarchy (dropping the constraint if no common ances-
tor exists). Instances covered by the found best generalization are subsequently
ignored and further rules are learned based on the other instances.

Rapier has been extended to use active learning [58]. The system is initially
trained from a small number of annotated examples. Then it tries to annotate a
large number of untagged examples, selecting those examples whose annotation is
least certain (certainty-based selective sampling). After the user has annotated
the selected examples, the system is incrementally retrained and the process
continued. Rapier does not provide probabilities, so the certainty of a rule is
estimated based on its coverage: pos − 5 × neg, where pos is the number of
correct extractions on the training data and neg the number of incorrect ones.
The active-learning version requires approximately half the examples to reach
the performance level of Rapier without active learning.

SRV: SRV [21] considers any combination of simple features (mapping a token
to a value, e.g. word length: 5, character type: alpha, orthography: capitalized, POS
tag: noun, semantic class: geographical-place) and relational features (mapping a
token to another token, e.g. next-token, subject-verb). Feature values can be sets,
e.g. all synonyms and hypernyms (superordinate concepts) listed by WordNet are
combined in a set for each token. SRV performs only a two-class classification, i.e.
different rule sets are learned for classifying each text fragment as an instance or
non-instance of a single slot filler—there is no component for template unification
or other postprocessing.

The learning algorithm is similar to the relational rule learner FOIL [42].
SRV learns top-down, greedily adding predicates of some predefined types: the
number of tokens in the fragment (length), whether a condition is matched by
one or several (some) or by all (every) tokens in the fragment; position specifies
the position of a token in a some predicate, relpos constrains the ordering and
distance between two tokens. The some predicate can be constrained by rela-
tional features, for example, some(?A [prev tok prev tok] numeric true) means:
there is some token in the fragment preceded by a numeric token two tokens
back.

Rules are validated and their accuracy estimated by three-fold cross valida-
tion. The three resulting rule sets are then merged. The accuracy estimations
are available for each prediction.

An advantage of relational learners is their being able to acquire powerful
relational rules that cover a larger and more flexible context than most other
rule-learning and statistical approaches. The downside is that the large space of
possible rules can lead to high training times and there is no guarantee of finding
optimal rules (local maxima problem).

An Overview and Classification of Adaptive Approaches to IE 187

3.4 Case-Based Approaches to IE and Knowledge Acquisition

To identify semantic and syntactic word features, knowledge-based approaches
rely on manually prepared world knowledge while statistical approaches are only
guided by regularities and patterns found in the training corpus. Case-based
approaches combine the advantages of both by accumulating knowledge only
from the training corpus and using previous experience to handle new words.
The case-based method suggested by Cardie [6] needs therefore no explicit dis-
ambiguation heuristics, but domain knowledge provided at the initial stage. It
includes knowledge about plausible parts of speech, word senses and contexts in
a given domain. The training phase is supervised by a user. The system solves
three independent tasks: POS assignment, word sense disambiguation and de-
termination of the word concept (category of the word). Processing of training
texts results in a case base of cases comprising these three types of information
for each non-functional word in the training corpus. The case base is used to
perform the tasks described above in new domain texts with unknown words.

Case base is constructed by acquiring a case for each occurrence of any non-
functional word in different context while parsing sentences of the training set.
A case summarizes the actual word features and features of its context. Word
features describe part of speech, general and specific word senses and concept,
context features include word features of two preceding and following words and
the parser state before processing of the current word. To define features of the
current word the human user is consulted. For the specification of the context
features of two preceding words case base is queried, the features of two following
words are added after the parser reaches them.

When a new text is processed, sentences are parsed and the context features
are identified in the same way. To identify the current word, the features of the
most similar cases are retrieved from the case base. Feature values that occur in
retrieved cases most frequently are selected to be the features of the new word.
Similarity of cases is measured by k-nearest-neighbors metric. Subsets of case
features that are relevant for determination of the value of each word feature
are identified using decision trees. For each word feature the relevant subset of
the context features of the currently processed word is compared with the same
subset of context features of cases in the case base. The more equal feature values
are found the more similar are the cases. Since similarity is influenced only by
context features, the assumption is proposed that the context is the only factor
that defines all three types of knowledge for a word.

The approach benefits from the fact that there are no fix word-concept pair-
ings and a much more realistic dependency of concept of the word on context
is assumed. Syntactic and semantic knowledge is learned simultaneously and
stored in one composite structure—the case. Source of domain information can
be human or semantic lexical resources, which makes the training of the system
easier.

From the point of view of IE, category of a word and its sense are a very
sparse“target structure”. Semantics are revealed not on a sentence, but on a word
level. Besides, it is arguable whether the context can be captured adequately by

188 C. Siefkes and P. Siniakov

regarding a static context window of 4 words. The assumption of exclusive role
of context in determination of word features is simplistic.

An interesting perspective is the extension of this approach to work on the
sentence level with cases summarizing sentence features, which would make solv-
ing more complex IE tasks such as fact extraction possible. Generally, similar
problems in IE have similar solutions, therefore case-based reasoning methods
are likely to be very promising for the future of IE.

3.5 Wrapper Induction

Stalker: The approach of Wrapper Induction (WI) is mainly targeted at struc-
tured and semi-structured documents that were generated automatically, e.g.
Web pages offering products of listing information. The Stalker algorithm [37]
covers documents that can be described in the embedded catalog (EC) formal-
ism. This formalism represents a document as a tree whose leaves contain the
relevant data (items of interest for the user). The inner nodes contain lists of
k-tuples (e.g. of restaurant descriptions). Each item in a tuple is either a leaf or
another (embedded) list.

Extraction is based of the EC description of a document and an extraction
rule that extracts the contents of each node or tuple from the contents of its
parent. List nodes require an additional list iteration rule that splits the list into
tuples.

Extraction rules are based on groups of successive tokens called landmarks.
Start rules locate the start of an item by find the first matching landmark
from the begin of the parent; end rules locate the end of the item by finding
the last matching landmark before the end of the parent. The text matched
by a landmark itself can either be included (SkipUntil condition) or excluded
(SkipTo condition) from the item text. Rules can combine several conditions,
e.g. SkipTo(Name) SkipTo()’ means that the item starts immediately after
the first HTML tag that follows the word Name. They can refer to specific
tokens or to wildcards like Number, Punctuation, or HtmlTag.

Disjunctions (either . . . or) are allowed to handle formatting variations. Dis-
junctions are ordered so the first successful match is used. Each node is extracted
independently of the other nodes within its parent, so no fixed ordering is re-
quired.

Rules are learned by a covering algorithm that tries to generate rules until
all instances of an item are covered (without false extractions, if possible) and
returns a disjunction of the found rules. Rules with fewer false extractions (or
more correction extractions, in case of a tie) are preferred when ordering the
disjunction.

To support active learning, Stalker has been embedded in a Co-Testing ap-
proach [38]. Co-Testing combines a number of views that independently learn to
recognize slot fillers. In the Aggressive Co-Testing approach, views can either be
strong (they can learn how to reliably recognize slot fillers) or weak (they might
learn either more general or more specific concepts, i.e. might either miss some
instances or extract spurious instances).

An Overview and Classification of Adaptive Approaches to IE 189

Stalker is used as a strong view. Stalker’s learning how to recognize the begin
and end of a slot filler is complemented by a weak view that learns patterns
to recognize the content of a slot filler (length range, contained token types
etc.). The content recognizer is a weak view because it learns concepts that
might be more general than the target slot filler, e.g. it cannot discern a phone
number from a fax number. A second strong view is provided by running Stalker
backwards, starting from the end of the document (BackTo instead of SkipTo).
Predictions are combined by majority voting: When both strong views agree, the
weak view is ignored; otherwise the prediction of the strong view that violates
fewer constraints of the weak view is chosen.

Boosted Wrapper Induction: Typical WI algorithms such as Stalker are only
suited for documents whose structure and layout are regular and consistent.
They are inadequate for free text, where information is mainly expressed in
natural language. The BWI (Boosted Wrapper Induction) system [22] aims at
closing this gap and making WI techniques suitable for free text.

The rules learned by BWI are simple contextual patterns for finding the start
and end of the field to extract. A pattern has two parts: a token sequence that
immediately precede/follow the field to extract (outside) and a token sequence
starting/ending it (inside). E.g. to identify the speaker’s name in a seminar an-
nouncement, the pattern <[who :] [dr .]> would locate the start of all entries
introduced by Who: and starting with the honorific Dr.. Patterns can also con-
tain wildcards, e.g. <Alph>/<ANum>/<Punc> match tokens that contain only
alphabetic/alphanumeric/punctuation characters, while <*> matches any to-
ken.

Such specialized simple patterns will often reach high precision but low re-
call because there are many other ways to express a fact, especially in natural
language texts. To address this issue, a large number of simple patterns are
learned and their results combined. For this purpose BWI applies the technique
of boosting, i.e. repeatedly applying the learning algorithm to the training data,
each time adjusting the weight of training examples to emphasize those examples
where the algorithm failed before.

A wrapper learned by boosting consists in a set F of “fore” and a set A of
“aft”detectors (patterns that detect the start and the end of a field) and a length
function H(k) that estimates the maximum-likelihood probability that the field
has length k. A text fragment < i, j > is extracted if F (i)×A(j)×H(j− i) > τ .
A trade-off between precision and recall is possible by varying the threshold τ .
Generally, BWI is biased toward precision, so setting τ = 0 results in a reasonable
recall at still high precision.

While one of the goals of BWI is to make WI algorithms suitable for free
(unstructured) text, BWI still performs significantly worse on free text than on
highly or partially structured text [27]. Most detectors learned from free text
merely memorize specific training examples [27, Sec. 4.2.3]. Also the algorithm
is biased towards overfitting to the particularities of the training data—the final
rounds of boosting actually lower the reliability of the results. Both precision
and recall on free texts can be increased by incorporating the output of a shal-

190 C. Siefkes and P. Siniakov

low parser into the model, splitting the text into a number of noun, verb, and
prepositional phrase segments [27, Sec. 8.1].

3.6 Hybrid Approaches

IE2: The IE2 system [1] submitted by SRA International to the MUC-7 confer-
ence is built in a highly modular way. The output of a standard named entity
recognizer is complemented by a custom component that recognizes domain-
specific entities (e.g. different kinds of vehicles). Another component recognizes
domain-specific types of noun phrases and relations between them (e.g. em-
ployee of, location of). Both these components are based on hand-written rules,
no learning is involved.

However, the IE2 system goes further than most approaches described in
this paper in also handling template unification beyond the sentence level. For
coreference resolution, different strategies are employed: one strategy uses sim-
ple hand-written rules, but another one learns decision trees (using the standard
implementation C50) from a tagged corpus. Optionally these strategies are com-
bined in a hybrid method where the decision tree algorithm works on a subset
of possible candidates chosen by the hand-written rules.

IE2 also handles event merging, i.e. deciding whether or not two descriptions
refer to the same event and can be merged. Here hand-written rules are combined
with external knowledge sources to check the consistency of locations (Miami is
in Florida) and times (can Wednesday and tomorrow refer to the same day
within the current text?).

While in most aspects IE2 is a typical representative of the classical hand-
written rules approach that was dominant in the MUC conferences, its hybrid
nature has interesting traits. Template unification and event merging beyond the
sentence level are complex challenges that so far have been largely out of reach for
learning systems. Combining trainable modules with external knowledge sources
and specialized hand-written code could be a viable approach to tackle problems
where single-paradigm solutions fail.

4 Knowledge-Based Approaches

4.1 Translation of Texts into Horn Clauses

One of the main purposes of IE is to make efficient search and transactions on
extracted information possible. Therefore one of the central requirements on the
target structure is an efficient querying mechanism. Another important issue is
how expressive a target structure is. A relational target structure can for instance
express only facts described by predicates but no conjunctions or disjunctions.
The approach suggested by Delisle et al. [13] envisions Horn clauses as the rep-
resentation resource of the target structure. Such a target structure is more
expressive and more powerful in comparison with a relational target structure.
Horn clauses allow conjunctions and implicit disjunctions and can be used to

An Overview and Classification of Adaptive Approaches to IE 191

infer new facts, draw inferences about extracted information or build a domain
theory. Generally, any logical techniques can be applied to this representation.

Since the extracted information is presented in logical form the application of
this approach can be regarded as knowledge extraction. Remarkably, the infor-
mation is extracted exhaustively, that is, everything identified as information is
extracted. Such an approach differs significantly from fact extraction paradigm
since neither a fix target structure is available nor any focus on items of interest
can be given. However, this approach still can be related to IE since relevant (in
this case all) information is found in an unstructured text and transferred into
formal structure.

The approach does not presuppose any external knowledge sources except
for continuous human interaction. To start semantic analysis, shallow parsing
of the text is necessary. Parsed sentences are matched against a growing set
of (potentially learned) cases. A case is a semantic interpretation of certain
syntactic patterns, more precisely, an interpretation of dependencies between
the verb and its arguments within a clause produced by a parser. Examples of
cases are Agent, Accompaniment, Location to, Time at. The best match and thus
semantic interpretation is suggested by a case analyzer and either confirmed or
corrected by the user. If a significantly different structure of a clause (primitive
sentence) is detected (compared to those stored in case pattern list), a new case
is stored. Case assignment relies on a hypothesis that “syntax gives a reliable
indication of meaning” (at least in examined technical texts).

At the beginning no predefined case patterns are necessary, however, user
interaction increases in this case. Bigger elements of a sentence (clauses) are
then matched against a restricted number of predefined patterns (causation,
prevention, disjunction. . .) to identify their semantic relationship. The conjunc-
tion between the clauses plays thereby a significant role. Every time a match
is found it is suggested to the user for confirmation. Additional syntactic infor-
mation is regarded to label dependencies between the clauses. Source of domain
information is the user. Cases are not assigned to “stative clauses” (clauses of
form of the verb to be). These are processed directly by creating correspond-
ing predicates. Translation from found semantic dependencies to Horn clauses
occurs after clause dependencies, cases in the clauses and semantics of nouns
(determined with WordNet) have been completely analyzed. Identified cases are
translated into predicates reflecting the pattern structure of the case. Clause
dependencies suggest how to piece together the Horn clause. For example, the
sentence “Jim is a resident of Canada because he is serving abroad in the armed
forces” would be transformed into:

is resident of(jim, canada) :- serve agt lat benf(jim, abroad, armed forces).
Identified Horn clauses are passed to the EBL (explanation based learning) mod-
ule for building of domain concepts and developing domain theory.

The biggest strength of this approach is the resulting expressive and powerful
target structure, which allows plenty of possibilities for further processing. The
idea to directly transform identified cases into predicates and compose the Horn
clause according to found clause relationships is very beneficial for the approach.

192 C. Siefkes and P. Siniakov

Since cases and clause relationships already contain semantic dependencies, Horn
clauses can be constructed in a very efficient and consistent way. However, the
way semantic relationships are derived from syntactic patterns is quite critical
because the underlying assumption does not always definitely hold; especially, it
is hardly applicable to other languages. Besides, case matching may fail as many
clauses would be semantically ambiguous because of interpretation by syntactic
structure.

The considerable involvement of human user is advantageous on the one
hand since the system gets reliable information, but on the other hand may
cause much effort given a text with big variety of case patterns. However, the
learning component successfully applies learned cases and case triggers so that
the amount of human interaction reduces with time. Another learning unit based
on EBL is used in the last stage of processing Horn clauses.

The algorithm is explicitly designed for knowledge acquisition task and can
hardly be applied to any other NLP tasks without serious modifications. Giving
up the basic assumption and extending case patterns to include lexical data
would possibly make it applicable to other languages. Since the main source of
domain information is the user and no assumptions are made about the domain
properties (except for technical texts) this approach could easily be adapted to
various environments.

4.2 Ontology-Based Extraction

The goodness of the initial semantic and syntactic domain description is crucial
for any rule and knowledge-based approach to IE. Usually this domain infor-
mation does not represent any abstract logical dependencies and relations in
the domain, since it is trimmed to IE purpose excluding comprehensive ele-
ments. Embley et al. [15] chose the ontology as one of the most explicit and
complete knowledge representation forms trying to employ its possibilities to
express deeper semantic relations.

However, using the ontology imposes some restrictions on the kind of pro-
cessed texts: they have to belong to a quite narrow domain and contain many
constants, which can potentially be extracted (e.g. proper names, numbers). The
extraction algorithm relies on the existence of a manually created ontology; el-
ements of the ontology cannot be used directly. Consequently tools for parsing
and transforming the ontology in suitable form are required.

The user does not provide an explicit target structure. An ontology parser
creates a relational database schema that serves as the target structure for con-
secutive extraction. Since the same ontology is used for all texts in a certain
domain and the parser output is deterministic, one can conclude an existence
of predefined, fix target structure, even though it has to be derived anew from
the ontology for each domain. The parser produces also a list of constants and
keyword rules that describes properties of relations in the ontology and their
attributes or their occurrence in text. Possible value range and text occurrence
are specified as a regular expression.

An Overview and Classification of Adaptive Approaches to IE 193

In the next step regular expressions are applied to the text to identify relevant
items. One expression matches potentially several times, therefore matching text
fragments are temporarily kept in a list for “candidate extractions”. The decision
whether an item will be extracted and what item will be chosen if there are several
candidates is guided by heuristics. Heuristics test candidate items for proximity of
a relevant keyword, overlapping etc. The item that is the next to a keyword and in
case of overlapping items the subsuming one is chosen. If an ontology allows many
values for an attribute of a relation all found matches are inserted. Otherwise, if
the criteria mentioned above are not applicable, the first one is extracted and the
rest ignored. The output is a database with extracted items.

In this approach the ontology represents the only resource and knowledge
bundle necessary to process every text of the described domain. The possibil-
ity to derive necessary rules or information for extraction from the ontology
makes the approach flexible. An ontology contains also predicates describing en-
tity relationships between entities and inference rules. This additional semantic
information can be used for more reliable identification of desired facts in a text.

However, the structure of the ontology used in this approach goes far beyond
the conventional notion including representational aspect and regular expres-
sions. It is basically a collection of related resources. The extraction suffers from
the fact that regular expressions cannot match non-trivial natural language ex-
pressions or whole sentences because of their complexity, so some items will
not be extracted because they cannot be identified. Moreover, the used regular
expressions are not changed or updated according to the results of extraction,
learning mechanisms are not employed. Manual creation of ontologies is very
tedious and hard to manage for bigger domains.

In the current form the ontology-based approach can handle listings, enu-
merations, generally preformatted text elements, but not complete sentences. It
can be enhanced if creation of regular patterns is not static and manually spec-
ified, but can be dynamically influenced by the semantic level of the ontology.
Currently the subject of extraction is mainly numbers and proper names. To
cope with the variety of natural language the system should be able to extract
other parts of speech. Changing elements of an ontology based on the extraction
results would ease the adjustment of the ontology to domain texts.

4.3 Thesaurus-Based Extraction

The TIMES system developed by Bagga and Chai [2] requires a number of knowl-
edge sources: the WordNet thesaurus, a general English dictionary, a domain-
specific dictionary, and a gazetteer of location names. Texts are preprocessed
with a tokenizer, a sentence splitter, an entity recognizer that identifies named
and numeric entities, and a partial parser that recognizes noun, verb, and prepo-
sitional groups with their respective head words. The preprocessing components
are based on finite-state rules.

Training is done by a user through a graphical interface. For each of the head
words identified by the parser, the user selects the appropriate sense (concept)
if WordNet defines several senses for this word. Then the user builds a semantic

194 C. Siefkes and P. Siniakov

network to represent the content of each training text. Selected head words from
the text are stored as nodes or relations within the network. For example, from
the phrase IBM Corp. seeks jobs candidates in Louisville, the user might build a
relation seek between two nodes IBM Corp. and job candidate.

The text-specific extraction rules created this way are then generalized ac-
cording to the hypernym/hyponym (super-/subordinate terms) relations defined
in WordNet. Generalization replaces a term by its hypernym n steps higher in the
WordNet hierarchy. For named entities (NE), the category determined by the NE
recognizer is generalized. E.g. IBM Corp. is identified as a company—generalizing
this concept one step yields business, concern; three steps yields organization. A
generalized rule matches any terms that are hyponyms of the generalized term.
Increasing the generalization level results in higher recall at the cost of precision,
because the generalized rules find instances missed by specialized rules but also
produce more false positives.

In later versions of the system, the user only has to mark the target informa-
tion to extract from a text. The system automatically builds relations between
the marked information and generalizes extraction rules to the most suitable
level [7].

The hypernyms of a word are sense-dependent. Rules for sense disambigua-
tion of head words are learned from the user-provided word senses [7]. Rules for
selecting a word sense contain a number of constraints for the phrases in the
context of the word to classify. Each constraint (match function) determines the
syntactic type (noun, verb or prepositional phrase) of a phrase and the token
value, semantic type (named/numeric entity type) and word sense of its head
word. More general rules contain fewer constraints. The system retains only rules
whose precision (ratio of correctly identified word senses) on the training data
exceeds a predefined threshold. When several rules fire, the rule with the highest
precision wins; when none fires, the most frequent word sense is chosen.

5 Statistical Approaches

5.1 Probabilistic Parsing

The SIFT system [35, 36] submitted to MUC-7 is one of the earliest statisti-
cal approaches to IE. The system simultaneously handles part-of-speech (POS)
tagging and parsing (syntactic annotations) as well as NE recognition and the
finding of relationships (semantic annotations), so the results of each task can
influence the others. Relationships link two entities of different types, e.g. in GTE
Corp. of Stamford there is a location-of relation between the company and the city.
The system was trained from the Penn Treebank corpus (1,000,000 words) for
syntactic annotations and a domain-specific annotated corpus (500,000 words)
for semantic annotations.

Tasks are primarily performed at the sentence level. In a final step, entity
coreferences are resolved beyond the sentence level (trained from coreference
annotations of the semantic corpus) and cross-sentence relationships are estab-
lished.

An Overview and Classification of Adaptive Approaches to IE 195

The domain-specific corpus requires only semantic tagging (entities, corefer-
ences, relationships), no syntactic annotations. After training the syntax model
from the Penn Treebank, it is applied to the domain-specific corpus to produce
parses that are consistent with the semantic annotations. The result is a single
parse tree that contains both syntactic (e.g. S: sentence, VP: verb phrase) and
semantic (e.g. per: person entity, emp-of: employee-of relationship) annotations.
The sentence-level model is then retrained on the resulting joint annotations
to produce an integrated model of syntax and semantics. Named entities are
recognized by a Hidden Markov Model.

The statistical model predicts the categories and POS tags of constituents
based on the data from the parse-tree context. The category of a head constituent
depends on the category of the parent node; of a modifier on the category of the
previous modifier and the parent node and its head constituent as well as on the
head word itself. The POS tag of a modifier depends on the modifier itself and
on the head word and its POS tag.

The probability of a whole augmented parse tree is the product of the prob-
abilities of all components. The most likely augmented parse tree is found by
a chart parser that proceeds bottom-up. Dynamic programming techniques and
pruning are used to keep the search space feasible. Maximum likelihood estimates
for all probabilities are obtained from the frequencies in the training corpus, us-
ing Witten-Bell smoothing to compensate data sparseness.

For determining whether a relation exists between two elements in different
sentences, the cross-sentence model calculates the probabilities that a relation
does or does not exist and chooses the more probable alternative. These proba-
bilities are calculated on the assumption of feature independence. The considered
features comprise structural features (the distance between the entities, whether
one of the entities was referred to in the first sentence of an article) and content
features (e.g. whether entities with similar names—probable coreferences—or
with similar descriptors are related in other contexts).

The results of the SIFT system were close to those of the best (hand-written)
systems in MUC-7.

5.2 Hidden Markov Models

Active Hidden Markov Models: The algorithm developed by Scheffer et al. [48, 49]
learns Hidden Markov Models (HMMs) from sparsely (partially) labeled texts.
Their HMM algorithm tags each token (word) in a document with one of a set of
predefined tags, or the special tag none—the tags (to find) are the hidden states
of the Markov Model, while the observed tokens are the visible output of the
model. The state (tag) sequence minimizing the per-token error is found using
the forward-backward algorithm. Thus the observation sequence John Smith,
extension 7343 should correspond to the state sequence (firstname, name, none,
phone). Attributes of each token store the output of preprocessing tools—e.g.
the POS tag, word stem, or the surrounding HTML element.

For training the model, partially labeled documents where some of the tags
are unspecified are sufficient. The remaining unknown tags are estimated using

196 C. Siefkes and P. Siniakov

the Baum-Welch algorithm. Active learning is used to select the most “difficult”
untagged tokens for hand-tagging by the user. The tokens with the lowest dif-
ference between the probabilities of the two most probable states are considered
most difficult.

HMMs Learned by Stochastic Optimization: The state-transition structure of
HMMs is often chosen manually. Freitag and McCallum [24] employ stochastic
optimization for this purpose. The algorithm performs hill-climbing starting from
a simple model and splitting states until a (locally) optimal state-transition
structure has been found. The performance of each model is evaluated on a
validation set.

The approach employs a separate HMM for each slot type (e.g. seminar
speaker) in a document. Each model contains two types of states, target states
that produce the tokens to extract and non-target states.

The Baum-Welch algorithm is used to estimate transition and emission prob-
abilities of each tested model. To increase the reliability of estimated emission
probabilities, the technique of shrinkage [23] is used. Parameter estimates from
sparse states in a complex model are “shrinked” towards estimates from related
states in a simpler model where more training data is available for each state (be-
cause the number of states is lower). All target states are considered as related,
as are all non-target states.

A weighted average learned through Estimation-Maximization is used to com-
bine the estimates of different models. The smoothed, shrinkage-based probabil-
ity of state s emitting word w is λ1P (w|s) + λ2P (w|a(s)) + λ3P (1

K), where the
last term represents the uniform distribution, a(s) is the parent state of s (a state
combining all target states if s is a target state, a state combining all non-target
states otherwise), and λ1 + λ2 + λ3 = 1.

For learning a suitable HMM structure, non-target states are further differ-
entiated as either prefix or suffix (preceding resp. following a target phrase) or
background states (anything else). The most simple HMM fitting this structure
has four states (one of each kind) and considers exactly one prefix + suffix around
each target state.1

This model is used as the starting point for hill climbing. Related models
are generated by lengthening a prefix, suffix, or target string (adding a new
state of the same kind that must be traversed before the model can proceed
to the next kind of state), by splitting a prefix/suffix/target string (creating a
duplicate where the first and last states of the duplicated prefix/suffix/target
have the same connectivity as in the original), or adding a background state.
Model variations are evaluated on a hold-out set or via 3-fold cross-validation.

Hierarchical Hidden Markov Models: Skounakis et al. [51] use hierarchical HMMs
(HHMMs) [17] for IE. HHMMs combine several levels of states to describe a

1 The background state is connected to itself and to the prefix state which is in turn
connected to the target state, the target state is connected to itself and to the suffix
state which is connected to the background state.

An Overview and Classification of Adaptive Approaches to IE 197

sequence at different granularity levels. A two-level HHMM is used—the top
level models phrase segments (noun, verb, and prepositional phrases) provided
by a shallow parser, the lower level models individual words (including their POS
tags) within a phrase.

The Viterbi, Forward, and Backward algorithms are adapted to ensure that
the embedded word model reaches the end state exactly at the end of a each
phrase and to ensure the typing of the phrase model (each state has a type that
corresponds to the type of the phrase segment it emits).

Context hierarchical HMMs (CHHMMs) are an extended variant that incor-
porate additional sentence structure information in each phrase. The word model
is extended to consider the left and right neighbor of each word, generating a
sequence of overlapping trigrams. To reduce the number of possible observa-
tions, individual features (words and tags) are combined under the assumption
of conditional independence.

Evaluation shows superior results for hierarchical models, especially CHH-
MMs, compared with flat HMMs.

Generally, HMMs offer a simple yet powerful way to model text that has
proved very successful in various areas of language processing. However, the
generative nature of HMMs makes it hard to capture multiple interdependent
sources of information. The approaches described in the following section address
this problem by switching to sequential models that are conditional instead of
generative.

5.3 Maximum Entropy Markov Models and Conditional Random
Fields

The Maximum Entropy Markov Models (MEMMs) used by [33] are a condi-
tional alternative to HMMs. MEMMs calculate the conditional probability of a
state (tag) given an observation (token) and the previous state (tag). Thus the
two parts of an HMM—calculating the probability of a state depending on the
previous one (transition function) and calculating the probability of an observa-
tion depending on the current state (observation function)—are collapsed into a
single function.

Observations can comprise many features which need not be independent.
Features are binary, e.g. the word “apple”, a lower-case word etc. The actually
used features are selected and weighted by maximum entropy (ME) modeling.
Generalized Iterative Scaling (GIS) is used to train the parameters of the model.
The most probable tagging sequence is found using a variation of Viterbi search
adjusted for MEMMs.

A variation of the Baum-Welch algorithm can be used to estimate missing
tags (states) during training, so the model can be trained from partially labeled
or even unlabeled documents. No experimental results of doing this are reported
though.

A disadvantage of associating observations with state transitions instead of
states is the high number of parameters: |S|2×|O| instead of the |S|2+|S|×|O| of

198 C. Siefkes and P. Siniakov

classical HMMs (|S| is the number of states, |O| of observations). This increases
the risk of data sparseness.

Tested on a text segmentation task, MEMM performs significantly better
than both classical HMMs and a stateless maximum entropy model.

A weakness of MEMMs is the label bias problem: the probability mass ar-
riving at a state must be distributed among the successor states, thus outgo-
ing transitions from a state compete only against each other, not against other
transitions. This results in a bias in favor of states with fewer outgoing tran-
sitions. Conditional Random Fields (CRFs) [28, 34] address this problem by
modeling the joint probability of an entire sequence of labels in a single expo-
nential model instead of modeling the conditional probabilities of next states in
per-state exponential models.

CRFs are undirected graphical models (a.k.a. random fields or Markov net-
works) that calculate the conditional of values on designated output variables
depending on other designated input variables.

P (y|x) =
1

Zx

∏
c∈C

Φc(xc, yc)

is the conditional probability of output values y given input values x. Zx =∑
y′

∏
c∈C Φc(xc, yc) is the normalizer (partition function), C is the set of all

cliques, Φc(·) is the potential function for clique c, xc and yc are the sub-sets of
the variables in x resp. y that participate in clique c.

CRFs have been employed for preprocessing tasks such as part-of-speech
(POS) tagging [28] and for IE subtasks such as coreference resolution [32].

5.4 Token Classification

There are multiple approaches that employ standard classification algorithms,
modeling information extraction as a token classification task. These systems
split a text into a series of tokens and invoke a trainable classifier to decide for
each token whether or not it is part of an slot filler of a certain type (e.g. speaker
or location of a seminar).

Combination Strategies: To re-assemble the classified tokens into multi-token
slot fillers, various combination strategies (or tagging strategies) can be used. The
trivial (Triv) strategy would be to use a single class for each slot type and an
additional “O” class for all other tokens. However, this causes problems if two
entities of the same type immediately follow each other, e.g. if the names of two
speakers are separated by a linebreak only. In such a case, both names would be
collapsed into a single entity, since the trivial strategy lacks a way to mark the
begin of the second entity.

For this reason (as well as for improved classification accuracy), various more
complex strategies are employed that use distinct classes to mark the first and/or
last token of an slot filler. The two variations of IOB tagging are probably most
common: the variant usually called IOB2 classifies each token as the begin of a
slot filler of a certain type (B-type), as a continuation of the previously started

An Overview and Classification of Adaptive Approaches to IE 199

slot filler, if any (I-type), or as not belonging to any slot filler (O). The IOB1
strategy differs from IOB2 in using B-type only when necessary to avoid am-
biguity (i.e. if two same-type entities immediately follow each other); otherwise
I-type is used even at the beginning of slot fillers. While the Triv strategy uses
only n + 1 classes for n slot types, IOB tagging requires 2n + 1 classes.

BIE tagging differs from IOB in using an additional class for the last token
of each slot filler. One class is used for the first token of a slot filler (B-type),
one for inner tokens (I-type) and another one for the last token (E-type). There
are two variations that differ in the handling of slot fillers consisting in a single
token (which is thus both begin and end): BIE1 simply assigns the begin class
(B-type), while BIE2 uses a fourth class BE-type to mark them specially.2 Thus
3n + 1 classes are used by BIE1, 4n + 1 by BIE2.

The strategies discussed so far require only a single classification decision
for each token (through often multiple binary classifiers are used concurrently
instead of a single multi-class classifier). Another option is to use two separate
classifiers, one for finding the begin and another one for finding the end of slot
fillers. Begin/End tagging requires n + 1 classes for each of the two classifiers
(B-type + O for the first, E-type + O for the second). In this case, there is
no distinction between inner and outer (other) tokens. Complete slot fillers are
found by combining the most suitable begin/end pairs of the same type, e.g. by
taking the length distribution of slots into account.

Classification Algorithms: There are various approaches that employ a classi-
fication algorithm with one of the combination strategies described above: [8] uses
Maximum Entropy (MaxEnt) modeling with BIE2 tagging; [59] uses Memory-
based Learning (MBL) with the IOB1 strategy; the TIE system [50] pairs the
Winnow algorithm [31] with IOB2. Since Winnow is an online algorithm that
can learn from a single pass over the training data, TIE support incremental
learning, i.e. the extraction model can be updated on-the-fly without requiring a
full retraining. However, better results are reported for batch training (multiple
passes over the training data).

ELIE [18, 19] uses two Support Vector Machines (SVM) for Begin/End tag-
ging. Highly improved results are reached by augmenting this setup with a second
level (L2) of begin/end classifiers. The L2 end classifier focuses on finding suit-
able end tags for matching left-over begin tags from the level-1 begin classifier
(and vice versa). While the L1 classifiers are trained on a very high number of
tokens, almost all of which are negative instances (O), the L2 classifiers only
consider the near context of left-over L1 begin/end tags which allows a more fo-
cused classification. In this way, the recall of the system can be increased without
seriously affecting the precision.

While token-classifying approaches lack the genuinely sequential nature of
HMMs and conditional models, they have proved very successful (cf. Sec. 6.5),

2 Note that the actual names used to identify classes do not matter and can deviate
from those used in the explanation; what matters is the chosen partitioning of tokens
into classes.

200 C. Siefkes and P. Siniakov

due to their ability to combine rich feature representations of the tokens to
classify with powerful classification algorithms.

5.5 Fragment Classification and Bayesian Networks

SNoW-IE: Roth and Yih [46] employ the Winnow -based SNoW classifier in
a two-stage architecture. Among a small number of possible candidate frag-
ments identified in the filtering stage, the (presumably) correct text fragment
is determined and extracted in the classifying stage. The two-stage architecture
allows using a rich feature representation in a second step for the small subset
of promising candidates which would be infeasible (or very inefficient) to use for
all possible fragments.

Rich context representations are created by encoding certain relational struc-
tures in propositional representations. In the first phase, only single word tokens
and POS tags and collocations of two adjoint words/tags (bigrams) are used
as features. For words and tags in the left and right context window, the rel-
ative position is encoded in the feature. In second phase, “sparse collocations”
of words/tags from left and right window and target phrase are also consid-
ered. A sparse collocation of n elements generates an n-gram feature for each
subsequence of elements vi . . . vj , 1 ≤ i < j ≤ n.

In the version presented in [46], a different classifier is trained for each entity
type in each phrase—dependencies between different types are not considered.
When several classifiers choose identical fragments for extraction, the more con-
fident classifier (higher activation value) wins.

But relations between entities can yield important hints for determining the
exact entity type. Thus the approach has been modified to recognize entities and
relations between them at the same time [47]. Borders of entities and existence of
relations must be given, but their types are established in a joint step, by maxi-
mizing the joint likelihood of all type assignments in a belief network (Bayesian
network), based on original estimates given by SNoW classifiers.

The mathematical model does not allow loops—different relations are as-
sumed to be independent and entity types are assumed to be independent of
relationship types. Another limitation of this approach is that entity borders
must be known in advance and cannot be changed.

BIEN: BIEN (Bayesian Information Extraction Network) [41] is another ap-
proach utilizing Bayesian networks. For preprocessing, words are lemmatized
(stemmed) and POS tagged and sentences are split into flat syntactic chunks
(noun, verb, prepositional, and other phrases). Additional features are provided
by capitalization, word length, and several gazetteers (location identifiers, pop-
ular names).

Dynamic Bayesian networks (DBNs) represent previous decisions to model
the order of events (“flow of time”), generalizing Hidden Markov Models. The
BIEN system is based on a DBNS that classifies each token as belonging to one of
the target field types or to the background (hidden variable Tag). Another hidden
variable (Last Target) stores the last recognized target field type, reflecting the

An Overview and Classification of Adaptive Approaches to IE 201

order in which target information is expressed. The Viterbi algorithm is used for
classification (determining the most likely sequence of Tag variables); the EM
algorithm is used for training the model.

6 Comparison of Selected Approaches

In this section we compare the approaches according to the types of tasks and
texts they can handle as well as the types of features they consider. We also
compare tagging requirements and learning characteristics. The final subsection
discusses quantitative evaluation and presents evaluation results on two standard
corpora. Table 1 in Sec. 1.3 can be consulted to locate the detailed descriptions
of approaches and systems.

6.1 Types of Tasks Handled

The main IE task is to fill a template that contains several slots, which is typically
done in two steps:

– Slot filling or single-slot extraction to find suitable fillers for the defined slots.
– Template unification or multi-slot extraction to combine the found slot fillers

into templates, resolving coreferences as required.

Most approaches described in this paper handle the first step only. Hence
they are limited to corpora where each document contains a single template;
otherwise additional pre- or postprocessing is necessary to split the input at
template boundaries or to arrange the found slot fillers into adequate tem-
plates.

Some systems—Crystal3, Whisk and TIMES—handle multi-slot extraction
at the sentence level. Thus no special processing is necessary if each template is
expressed within a single sentence in a input text. This might be sufficient for
some domains but it is not a general solution to the template unification task.

Other approaches go further by unifying templates at a logical level, beyond
sentence borders: the Amilcare extension of (LP)2, IE2, SIFT, and the extended
version of SNoW-IE.

A significant difference can be observed in the requirements on target struc-
tures: the approaches presented in sections 3.1 and 4.1 generate templates dy-
namically; all other approaches require a predefined target structure. The dy-
namic construction of target structures reduces the human effort necessary to
adapt a new domain; however, in many cases, automatically deduced structures
will be less appropriate than hand-modeled ones.

6.2 Types of Texts Handled

Three types of texts are often distinguished (cf. [54, Sec. 1], [14, Sec. 2.5]):
3 Crystal does not identify exact slot fillers but only sentence constituents containing

slot fillers, thus it always requires postprocessing.

202 C. Siefkes and P. Siniakov

– Free texts are grammatical natural-language texts, e.g. newspaper articles or
scientific papers.

– Semi-structured texts are not fully grammatical and sometimes telegraphic
in style, e.g. newsgroups or email messages or classified ads.

– Structured texts contain textual information strictly following a predefined
(but not necessarily known) format where items are arranged in a fixed
order and separated by delimiter characters or strings. Examples are comma-
separated values or web pages generated from a database.

Even though some systems are designed for certain types of texts, it cannot be
assumed that some class of IE approaches is particularly suitable for a particular
kind of text. Furthermore, all classes have in common that the performance on
structured texts is better than on free texts.

Some approaches—TANKA/MaLTe, the original version of Crystal4, IE2,
TIMES and SIFT—rely heavily on linguistic information and are thus suitable
for free texts only. The system described by Embley et al. [15] is restricted
to structured texts. Most other approaches are suitable for both free and semi-
structured texts—they make use of linguistic information as far as it is available,
but do not necessarily require it.

Most other systems make little or no use of linguistic knowledge, thus they
are suited for semi-structured and structured texts. Whisk, SRV and BWI claim
to be targeted at any text type, from free text to structured text. Approaches
that allow variable input will play a major role in the future research, since in
real world domains an IE system will be confronted with the large diversity of
texts.

6.3 Considered Features

There is a wide variety in the types of features that are considered for learning
by different approaches. All systems utilize the words (tokens) in a text as the
main lexical features. Not only the presence or absence of a word but also the
word order play an important role. Morphological information is used not quite
as universally, but very frequently. Especially POS (part-of-speech) tags are used
by a wide variety of systems. Some systems also utilize a stemmer or lemmatizer
to determine the base forms of words.5

For linguistic information beyond the word level, several approaches6 rely
on simple chunkers that identify various types of clauses (noun, verb, preposi-
tional clauses etc.) in a sentence. More refined chunk parsers that also assign
grammatical roles for chunks (subject, direct or indirect object) are employed
by the systems presented in Sec. 3.1 and by Crystal and Whisk (for free texts).
Only two systems, SRV and TANKA/MaLTe, make use of a deep parser. Rule
and knowledge-based systems tend to embed more syntactic information since

4 [53] describes an extension to semi-structured text.
5 (LP)2, TIE and BIEN, optional for Active HMMs.
6 Such as TIMES, (C)HHMMs, TIE, BIEN, and the extended version of BWI.

An Overview and Classification of Adaptive Approaches to IE 203

syntax is often used for rule construction. Statistical systems consider predom-
inantly linguistic information related to single tokens due to their token-based
processing of the text.

Semantic information is used less frequently than syntactic. Typically, it com-
prises simple gazetteers or word lists assigning semantic classes to words.7 Some
approaches8 use a complete thesaurus, WordNet [16]. Knowledge-based systems
use their own built-in knowledge-bases.

Some approaches9 consider features derived from the shape of words/tokens,
e.g. token type (lower-case, capitalized, all-caps, digits, etc.) or prefixes and
suffixes. Most approaches work on plain text input without formatting, but a few
can utilize structural information from HTML or XML documents: Stalker and
BWI can handle HTML tags (treating them as normal tokens), Active HMMs
optionally consider the HTML context of text tokens, TIE creates structured
context representations based on the DOM tree of XML documents.

While usually the handled types of features are fixed in advance, the Amilcare
system chooses an adaptive way to consider linguistic information (“LazyNLP”):
the amount of linguistic information available for learning rules is gradually
increased until the effectiveness of the generated rules stops improving.

The three main classes of IE approaches differ significantly in the amount
of used features. Knowledge-based approaches utilize comparably few features
restricting them on semantic and syntactic information. Some statistical systems
try to exploit all available information about text elements generating relatively
big amount of features. Rule-based systems tend to rely heavily on linguistic
features for rule generation.

6.4 Tagging Requirements and Learning Characteristics

Most approaches require training texts to be fully tagged, i.e. all items to extract
must be marked (either embedded within the texts or in external documents).
Full tagging of a large number of documents is a serious burden. Some systems
alleviate this requirement by using active learning on partially tagged texts (the
extended version of Rapier, Whisk, Stalker in Co-Testing setting, Active HMMs).
TIE is the only system that allows incremental learning, i.e. the extraction model
can be updated on-the-fly without requiring a full retraining. The approaches
described in Sections 3.1, 3.4 and 4 utilize human review and interaction instead
of postulating pretagged texts.

The general trend should go towards relaxing the input requirements on the
training texts by incorporating better learning models. Statistical systems par-
tially succeed in processing not fully consistent text corpora, while rule-based
and knowledge-based systems rely on traditional elaborately prepared text re-
sources.
7 Used by Riloff’s system, Crystal, (LP)2, TIMES, TIE, and BIEN for various word

classes.
8 Rapier, SRV, TIMES.
9 SRV, BWI, MEMM, TIE.

204 C. Siefkes and P. Siniakov

6.5 Quantitative Comparison

Evaluation Metrics: The most commonly used metrics for quantitative evalu-
ation of IE systems are precision and recall ; the joint F-measure combines them
both in a single figure. For each slot type, results are evaluated by counting
true positives tp (correct slot filters), false positives fp (spurious slot filters),
false negatives fn (missing slot filters) and calculating precision P = tp

tp+fp and

recall R = tp
tp+fn . The F-measure is the harmonic mean of precision and recall:

F =
2× P ×R

P + R
.

For a corpus containing multiple slot types, there are several ways to combine
results of all types into a single measure. The microaverage is calculated by
summing the respective tp, fp and fn counts for all types and then calculating
P , R, and F over the summed counts. Thus slot types that occur more frequently
have a higher impact on the joint measure than rare types. On the other hand,
the macroaverage is calculated by computing the mean of all type-specific P and
R values, so all types are considered of equal importance, no matter how often
they occur.

A disadvantage of the microaverage is that is depends on knowing the raw
counts, which are hardly ever published in research papers. This is addressed
by a related metric, the weighted average proposed by [8]: here each slot type
is weighted by the total number of slot fillers of this type in the corpus. These
numbers can be determined by inspecting a corpus, allowing comparisons with
other systems evaluated on the same corpus even if no raw counts have been
published.

Evaluation Methodology: As discussed in [29, 30], there are several issues
that need to be addressed to allow a fair comparison of different systems, some
of which have often been neglected in previous IE evaluations. An important
issue is the size of the split between training and testing set (e.g. 50/50 or 80/20
split) and the procedure used to determine partitions (n-fold cross-validation or
n random splits).

Another issue is how to compare predicted answers (slot fillers) with the
expected (true) answers. Typical options are to require that all occurrences of a
slot in a document should be found (“one answer per occurrence”) or to expect
only a single answer per slot which is considered most likely to be correct (“one
answer per slot”). The latter option is useful if multiple answers for the same slot
are expected to be synonymous (e.g. “2pm” and “2:00 pm”), the former if each
occurrence is assumed to contain relevant new information. A less frequently used
option would be “one answer per different string” where multiple occurrences of
the same string are collapsed into a single occurrence, i.e. different positions in
the document are ignored.

An Overview and Classification of Adaptive Approaches to IE 205

Table 2. F-Measure Results on the Seminar Announcements Corpus

Approach Slots BWI ELIE/L2 HMM (LP)2 MaxEnt MBL SNoW-IE TIE
Reference [22] [18] [23] [9] [8] [59] [46] [50]

etime 228 93.9 96.4 59.5 95.5 94.2 96 96.3 97.5
location 464 76.7 86.5 83.9 75.0 82.6 87 75.2 80.6
speaker 409 67.7 88.5 71.1 77.6 72.6 71 73.8 85.2
stime 485 99.6 98.5 99.1 99.0 99.6 95 99.6 99.3

Weighted Avg 83.9 92.1 81.7 86.0 86.9 86.6 85.3 89.9
Macroaverage 84.5 92.5 78.4 86.8 87.3 87.3 86.2 90.7

Seminar Announcements Corpus: While there is no universal standard cor-
pus that has been used to evaluate all (or most) IE approaches, several reference
corpora have been used quite frequently.

The most frequently used IE corpus is probably the CMU Seminar Announce-
ments10 (SemAnn) corpus. The corpus contains 485 seminar announcements
(plain text files) collected from university newsgroups; the task is to extract up
to four slots from each document (if present): speaker, location, start time (stime)
and end time (etime) of the talk.

Generally, training and test sets of equal size are used (50/50 split) and
results are averaged over five or sometimes ten random splits. There are no
predefined random splits for this corpus, so each system uses their own. The
page model published with the corpus prescribes that the “one answer per slot”
method should be used. Table 2 lists the best known results published on this
corpus.11 The last two rows contain the weighted average (based on the number
of existing slot fillers given in column 2) and the macroaverage.

It is noteworthy that the systems reaching best results on this corpus (ELIE
and TIE) are statistical classification-based systems (cf. Sec. 5.4). There are only
two rule-learning systems, BWI and (LP)2, among the eight best systems, and
their performance is inferior to that of the best statistical systems.

Job Postings Corpus: Another frequently used corpus is the Job Postings
collection of Mary E. Califf [3]. The corpus consists of 300 job offers posted to a
Usenet newsgroup. The tasks defines 17 slots of information to extract about job
offers (job title, company, recruiter, salary etc.) and postings (message id, post
date). Sadly, evaluation methodologies used on this corpus vary wildly. Some
authors use 10-fold cross-validation while others use a 50/50 training/test split
averaged over 10 random splits. Another ([54]) uses only a subset of 100 randomly
selected documents for his tests, while others ([12]) use an extended corpus that
contains 600 documents. The original description of the corpus seems to suggest
that “one answer per occurrence” is expected but is not quite clear about this.
10 Accessible from [45], a corrected version with some minor annotation errors fixed is

available at http://nlp.shef.ac.uk/dot.kom/resources.html.
11 One other statistical approach, BIEN [41], is not directly comparable, since it uses

an 80/20 split instead of 50/50. BIEN reaches an weighted average F-measure of
88.9%.

206 C. Siefkes and P. Siniakov

Table 3. F-Measure Results on the Job Postings Corpus

Approach Slots ELIE/L2 RAPIER (LP)2 DeSitter SNoW-IE

id 301 99.7 97.5 100.0 97 99.7
title 252 55.8 40.5 43.9 36 52.7
company 91 79.5 70.0 71.9 57 75.4
salary 107 66.3 67.4 62.8 62 72.9
recruiter 167 82.0 68.4 80.6 53 85.3
state 235 92.7 90.2 84.7 86 91.7
city 269 95.1 90.4 93.0 89 89.0
country 138 95.8 93.2 81.0 95 95.5
language 516 91.4 80.6 91.0 26 82.5
platform 469 79.8 72.5 80.5 32 74.1
application 367 69.7 69.3 78.4 30 60.9
area 658 48.7 42.4 66.9 16 51.6
req-years-exp 154 80.0 67.1 68.8 62 83.9
des-years-exp 44 82.9 87.5 60.4 41 79.0
req-degree 82 79.0 81.5 84.7 35 83.5
des-degree 21 55.2 72.2 65.1 35 60.9
post date 298 97.5 99.5 99.5 91 99.2

Weighted Avg 78.6 72.9 79.8 49.9 76.4
Macroaverage 79.5 75.9 77.2 55.5 78.7

An overview of results reached on this corpus is given in Table 3 (based on
[30] and [18]). However, due to the inconsistent evaluation methodologies and
testing sets, they must be treated with caution. The statistical ELIE system
and the rule-learning (LP)2 seem to be very close to each other. However, it is
likely that (LP)2 was set up to evaluate only “one answer per slot” instead of
the “one answer per occurrence” setup used by ELIE. This would explain the
apparently better performance on fields such as platform, application, and area,
which occur multiple times in many documents. Other fields such as message id
and post date are highly regular (part of the message metadata), which explains
the superior results of the rule-based system.

Other Corpora: There are various other corpora, many of which can be found
in the RISE Repository [45]. The most popular of these is probably the Corporate
Acquisitions corpus, another corpus which comes from the same source as the
Seminar Announcements corpus, the PhD thesis of Dayne Freitag [20]. It contains
600 annotated articles about mergers and acquisitions from the Reuters-21578
corpus. The task is to extract the full and abbreviated names of the parties to an
acquisition, the location of the acquired company, the price paid and information
about the status of negotiations. Another important corpus is a collection of
Apartment Rentals created by Stephen Soderland [54]. However, none of these
corpora has been used for evaluation of as many trainable systems as those
detailed above.

An Overview and Classification of Adaptive Approaches to IE 207

7 Conclusion

Focus of adaptive methods is quite diverse and reaches from accomplishing sub-
tasks of IE to complete IE systems. Adaptive approaches to information extrac-
tion comprise methods that apply experience acquired in training or knowledge
gained from external resources (such as thesaurus or user) to establish some kind
of a domain model that is capable of locating relevant contents in domain texts
and matching them to the target structure of the domain. The structure of the
model determines to a large degree the features of an approach and is therefore
the main criterion for its classification. Rule-based approaches learn the model
as a set of pattern-driven extracting rules, statistical approaches build formal
mathematical representations, while knowledge-based approaches establish ex-
plicit logical models.

The principle of adaptive approaches originates from the endeavor to reduce
the amount of hand-coded domain knowledge. However, the approaches still re-
quire human contribution in various forms depending on their class. Human
knowledge is utilized as explicit knowledge sources (gazetteers, ontologies etc.),
examples specifying what to extract by identifying relevant content in train-
ing text or in form of human supervision interacting directly with the system
during correction of the extraction proposals. While statistical and rule-based
approaches rely on the latter, knowledge-based approaches focus mainly (but not
exclusively) on the former. Arguably, the annotation of texts is often less costly
than the explicit formalization of knowledge, which makes statistical or rule-
based approaches more attractive for adaptation to domains where no explicit
knowledge sources are available. On the other hand, knowledge-based approaches
allow easier re-use of existing formalizations.

Rule learning approaches try to exploit the regularity in expressions of cer-
tain information to find common linguistic patterns that match these expressions.
The majority of approaches use rule learning techniques to acquire the patterns.
During the learning process the existing incomplete, erroneous or insufficiently
general patterns are improved using the feedback of a human supervisor or anno-
tations of the training corpus. The interconnection between the learned patterns
and the action transferring the relevant content in the target structure explicitly
or implicitly constitutes the learned rule. A frequently found limitation is the
rudimentary learning mechanisms that do not provide enough generalization ca-
pabilities. Often the shortcomings and weak results are camouflaged by restrict-
ing the complexity of the target structure. Developing more profound models will
be an important research direction for rule learning methods. Another serious
drawback of the actual extraction is that it typically happens within sentence
boundaries or within the scope of predefined instances.

Statistical approaches basically reduce the IE task to the prediction problem.
In the simple case every text token is classified as some attribute of the target
structure or not relevant. Thereby they utilize training data very effectively being
able to learn the correct prediction even from quite limited numbers of examples.
Knowledge-based approaches are much stronger supported by external resources
and consider additionally grammatical parse trees and lookup of semantic classes,

208 C. Siefkes and P. Siniakov

either flat (dictionaries, gazetteers, entity recognizers) or arranged in hierarchies
(thesauri, ontologies).

Due to their heavy reliance on linguistic information, knowledge-based ap-
proaches are suitable for grammatical texts (“free texts”) only, while most sta-
tistical approaches can also handle “semi-structured texts” that are not fully
grammatical and sometimes telegraphic in style, e.g. newsgroups or email mes-
sages or classified ads. Therefore they are more robust with respect to textual
irregularities such as typographical errors or ungrammatical text. Statistical ap-
proaches typically process a single word at a time and combine the results, while
knowledge-based approaches focus on whole sentences. A common trend of both
types of approaches is that early systems (TANKA/MaLTe, SIFT) tend to be
more ambitious, while later development narrows down on more pragmatic and
realizable goals.

Even though remarkable progress has been achieved in the field of IE in recent
time, especially making the systems more autonomous and universally applica-
ble, many problems remain hardly or not yet tackled. The majority of approaches
is not able to recognize and extract multiple occurrences of complex facts. The
systems either cannot handle complex facts at all assuming the target structure
to be a flat slot sequence or it is presupposed that every document contains at
most one instance of the same complex fact. The major difficulty arises when
fragments of information belonging together are scattered in different sometimes
distant parts of a text and it has to be determined whether and which fragment
belongs to what complex entity. Even the most advanced approaches can hardly
handle unification of partial facts beyond the sentence boundaries. The research
challenge will be to find a way of reassembling composite information without
establishing a complete logical representation of the text content.

A similar problem with very different background occurs when the same
instance of a fact repeatedly appears in different forms. Due to the richness of
natural language we can refer to an entity in very many ways. However, only
one occurrence containing the most complete information should be extracted.
Current systems often do not recognize that text fragments refer to the same fact
and extract them as a new found instance. The most straightforward solution not
yet practiced would be to embed the mechanisms of coreference resolution in the
extraction algorithm and develop strategies for selecting the most appropriate
occurrence.

Information extraction suffers from uncertainty of the natural language. Of-
ten facts are expressed with a certain degree of tentativeness (e.g. indirect speech:
“someone reported that. . . ”, “s.o. assumed that. . . ”). In such cases even for hu-
mans it is difficult to decide whether the information is factual and hence rele-
vant. An important task will be to determine the degree of reliability of infor-
mation, which is possible deploying fuzzy methods.

Probably the hardest problem of IE is to identify implicitly expressed in-
formation. However, implicitness of information can be of different origin too.
Saying “The furious battle between pirates and government troops ended in the
crack of dawn as the pirates raised the white flag” we have to consult our world

An Overview and Classification of Adaptive Approaches to IE 209

knowledge and retrieve the fact that white flag is a symbol for a defeat to con-
clude, who won the battle. Consider, on the other hand, “She lived in Berlin.
James was born in the small homonymous town in Texas” where it is sufficient
to know the semantics of the word “homonymous” to infer James’ place of birth.
Surprisingly, some rule-based and statistical systems even now in simple cases
can capture the implicit semantics in linguistic patterns resp. statistical context
models as if it were an explicitly expressed fact. Two prerequisites must be ful-
filled: the fact has to occur somewhere in the text explicitly (comp. “Berlin” in
the last example) and there must be sufficiently many examples for this kind
of implicit reference. More general solutions, however, would require different
approaches which so far are not in sight.

In this context a very important and interesting question is whether the
more profound embedding of semantic analysis will contribute to the advance in
IE. Recent successes in single-slot information extraction reached by statistical
systems that almost completely forgo semantic resources and analysis suggest
that it may be dispensable. But does the good performance for the simplest of
IE tasks open optimistic perspectives for much more difficult tasks or have the
statistical approaches already reached their limit? One development perspective
consists in the combination of statistical extraction systems with algorithms
for normalization, coreference resolution and instance unification that rely more
heavily on external knowledge bases or rules.

Future research will have to face these problems and questions to extend the
practical usefulness of IE systems to a broader range of applications.

References

[1] C. Aone, L. Halverson, T. Hampton, and M. Ramos-Santacruz. SRA: Descrip-
tion of the IE2 system used for MUC. In Proceedings of the Seventh Message
Understanding Conference (MUC-7), 1998.

[2] A. Bagga and J. Y. Chai. A trainable message understanding system. In CoNLL,
pages 1–8. 1997.

[3] M. E. Califf. Relational Learning Techniques for Natural Language Extraction.
PhD thesis, University of Texas at Austin, 1998.

[4] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for in-
formation extraction. In Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing, pages 6–11, Menlo Park, CA, 1998.

[5] M. E. Califf and R. J. Mooney. Bottom-up relational learning of pattern matching
rules for information extraction. Journal of Machine Learning Research, 4:177–
210, 2003.

[6] C. Cardie. A case-based approach to knowledge acquisition for domain-specific
sentence analysis. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 798–803. AAAI Press, 1993.

[7] J. Y. Chai and A. W. Biermann. The use of word sense disambiguation in an
information extraction system. In AAAI/IAAI, 1999.

[8] H. L. Chieu and H. T. Ng. A maximum entropy approach to information extraction
from semi-structured and free text. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pages 786–791, 2002.

210 C. Siefkes and P. Siniakov

[9] F. Ciravegna. (LP)2, an adaptive algorithm for information extraction from Web-
related texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Ex-
traction and Mining, Seattle, USA, 2001.

[10] F. Ciravegna and A. Lavelli. LearningPinocchio: Adaptive information extraction
for real world applications. In Proceedings of the 2nd Workshop on Robust Methods
in Analysis of Natural Language Data (ROMAND 2002), Frascati, Italy, 2002.

[11] R. Collier. Automatic template creation for information extraction, an overview.
Technical report, University of Sheffield, 1996.

[12] A. De Sitter and W. Daelemans. Information extraction via double classification.
In Proceedings of the International Workshop on Adaptive Text Extraction and
Mining (ATEM-2003), 2003.

[13] S. Delisle, K. Barker, J.-F. Delannoy, S. Matwin, and S. Szpakowicz. From text
to Horn clauses: Combining linguistic analysis and machine learning. In 10th
Canadian AI Conf., 1994.

[14] L. Eikvil. Information extraction from World Wide Web – A survey. Technical
Report 945, Norwegian Computing Center, 1999.

[15] D. W. Embley, D. M. Campbell, R. D. Smith, and S. W. Liddl. Ontology-based
extraction and structuring of information from data-rich unstructured documents.
In Conference on Information and Knowledge Management (CIKM), pages 52–59,
1998.

[16] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, 1998.

[17] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden Markov model: Analysis
and applications. Machine Learning, 32(1):41–62, 1998.

[18] A. Finn and N. Kushmerick. Information extraction by convergent boundary
classification. In AAAI-2004 Workshop on Adaptive Text Extraction and Mining,
San Jose, USA, 2004.

[19] A. Finn and N. Kushmerick. Multi-level boundary classification for information
extraction. In ECML 2004, pages 111–122, 2004.

[20] D. Freitag. Machine Learning for Information Extraction in Informal Domains.
PhD thesis, Carnegie Mellon University, 1998.

[21] D. Freitag. Toward general-purpose learning for information extraction. In
C. Boitet and P. Whitelock, editors, Proc. 36th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 404–408, San Francisco, CA, 1998.

[22] D. Freitag and N. Kushmerick. Boosted wrapper induction. In AAAI/IAAI, pages
577–583, 2000.

[23] D. Freitag and A. K. McCallum. Information extraction with HMMs and shrink-
age. In Proceedings of the AAAI-99 Workshop on Machine Learning for Informa-
tion Extraction, 1999.

[24] D. Freitag and A. K. McCallum. Information extraction with HMM structures
learned by stochastic optimization. In AAAI/IAAI, pages 584–589, 2000.

[25] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review,
13(1):3–54, 1999.

[26] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM—semi-automatic creation
of metadata. In A. Gomez-Perez and V. R. Benjamins, editors, Proc. 13th Inter-
national Conference on Knowledge Engineering and Management, 2002.

[27] D. Kauchak, J. Smarr, and C. Elkan. Sources of success for information extraction
methods. Technical Report CS2002-0696, UC San Diego, 2002.

[28] J. Lafferty, A. K. McCallum, and F. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In ICML, 2001.

An Overview and Classification of Adaptive Approaches to IE 211

[29] A. Lavelli, M. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmerick, and
L. Romano. A critical survey of the methodology for IE evaluation. In Proceedings
of the 4th International Conference on Language Resources and Evaluation (LREC
2004), 2004.

[30] A. Lavelli, M.-E. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmerick,
and L. Romano. IE evaluation: Criticisms and recommendations. In AAAI-2004
Workshop on Adaptive Text Extraction and Mining, San Jose, USA, 2004.

[31] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

[32] A. McCallum and B. Wellner. Object consolidation by graph partitioning with
a conditionally-trained distance metric. In KDD Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, 2003.

[33] A. K. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models
for information extraction and segmentation. In ICML, 2000.

[34] A. K. McCallum and D. Jensen. A note on the unification of information extrac-
tion and data mining using conditional-probability, relational models. In IJCAI’03
Workshop on Learning Statistical Models from Relational Data, 2003.

[35] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel,
and the Annotation Group. Algorithms that learn to extract information—BBN:
Description of the SIFT system as used for MUC. In MUC-7, 1998.

[36] S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statistical
parsing to extract information from text. In ANLP-NAACL, pages 226–233, 2000.

[37] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical wrapper induction for
semistructured information sources. Autonomous Agents and Multi-Agent Sys-
tems, 4(1/2):93–114, 2001.

[38] I. Muslea, S. Minton, and C. A. Knoblock. Active learning with strong and weak
views: A case study on wrapper induction. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2003), 2003.

[39] U. Y. Nahm and R. J. Mooney. Using information extraction to aid the discovery of
prediction rules from text. In Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000) Workshop on Text Mining,
Boston, MA, 2000.

[40] C. Nobata and S. Sekine. Towards automatic acquisition of patterns for informa-
tion extraction. In International Conference of Computer Processing of Oriental
Languages, 1999.

[41] L. Peshkin and A. Pfeffer. Bayesian information extraction network. In IJCAI,
2003.

[42] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL and
related systems. New Generation Computing, 13(3,4):287–312, 1995.

[43] E. Riloff and R. Jones. Learning dictionaries for information extraction by multi-
level bootstrapping. In Proceedings of the Sixteenth National Conference on Ar-
tificial Intelligence, pages 1044–1049. The AAAI Press/MIT Press, 1999.

[44] E. Riloff and M. Schmelzenbach. An empirical approach to conceptual case frame
acquisition. In Proceedings of the Sixth Workshop on Very Large Corpora, 1998.

[45] RISE repository. http://www.isi.edu/info-agents/RISE/.

[46] D. Roth and W.-t. Yih. Relational learning via propositional algorithms: An
information extraction case study. In IJCAI, 2001.

[47] D. Roth and W.-t. Yih. Probabilistic reasoning for entity & relation recognition.
In COLING’02, 2002.

212 C. Siefkes and P. Siniakov

[48] T. Scheffer, C. Decomain, and S. Wrobel. Active hidden Markov models for infor-
mation extraction. In Proceedings of the International Symposium on Intelligent
Data Analysis, 2001.

[49] T. Scheffer, S. Wrobel, B. Popov, D. Ognianov, C. Decomain, and S. Hoche.
Learning hidden Markov models for information extraction actively from partially
labeled text. Künstliche Intelligenz, (2), 2002.

[50] C. Siefkes. Incremental information extraction using tree-based context repre-
sentations. In A. Gelbukh, editor, Sixth International Conference on Intelligent
Text Processing and Computational Linguistics (CICLing 2005), Lecture Notes in
Computer Science, pages 510–521. Springer, 2005.

[51] M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden Markov models for
information extraction. In IJCAI, 2003.

[52] S. Soderland. Learning Text Analysis Rules for Domain-specific Natural Language
Processing. PhD thesis, University of Massachusetts, Amherst, 1997.

[53] S. Soderland. Learning to extract text-based information from the World Wide
Web. In Proc. Third International Conference on Knowledge Discovery and Data
Mining (KDD-97), pages 251–254, 1997.

[54] S. Soderland. Learning information extraction rules for semi-structured and free
text. Machine Learning, 34(1–3):233–272, 1999.

[55] S. Soderland. Building a machine learning based text understanding system. In
Proc. IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, 2001.

[56] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. CRYSTAL: Inducing a con-
ceptual dictionary. In C. Mellish, editor, Proc. 14th International Joint Conference
on Artificial Intelligence, pages 1314–1319, San Francisco, 1995.

[57] K. Sudo, S. Sekine, and R. Grishman. Automatic pattern acquisition for Japanese
information extraction. In HLT2001, 2001.

[58] C. A. Thompson, M. E. Califf, and R. J. Mooney. Active learning for natural
language parsing and information extraction. In Proc. 16th International Conf.
on Machine Learning, pages 406–414, 1999.

[59] J. Zavrel and W. Daelemans. Feature-rich memory-based classification for shallow
NLP and information extraction. In J. Franke, G. Nakhaeizadeh, and I. Renz,
editors, Text Mining, Theoretical Aspects and Applications, pages 33–54. Springer
Physica, 2003.

View Integration and Cooperation in Databases,
Data Warehouses and Web Information Systems�

Hui Ma1, Klaus-Dieter Schewe1, Bernhard Thalheim2, and Jane Zhao1

1 Massey University, Department of Information Systems &
Information Science Research Centre,

Private Bag 11 222, Palmerston North, New Zealand
{h.ma, k.d.schewe, j.zhao}@massey.ac.nz

2 Christian Albrechts University Kiel,
Department of Computer Science and Applied Mathematics,

Olshausenstr. 40, D-24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract. View integration aims at replacing a set of existing views by
a single new one in such a way that with respect to information capacity
the new view dominates or is equivalent to the old ones. Therefore, in this
article we first investigate a theory of schema equivalence and dominance
for the higher-order Entity-Relationship model (HERM) based on the
notion of computable queries. We then develop formal transformation
rules for schema integration that are embedded in a pragmatic method
telling how they should be applied for integration.

We then apply the approach to views, which occur as the basic con-
stituents for user interfaces as formalised by the notion of dialogue type.
In two follow-on steps we apply the rule-based view integration tech-
nique to data warehouses and web information systems. In the case of
data warehouses the fundamental idea is the separation of input from op-
erational databases and output to on-line analytical processing (OLAP)
systems. Both the extraction of data from the operational databases and
the definition of the data-marts for OLAP can be formulated by views.

In the case of web information systems, views form the core of media
types, which provide abstract means for describing content, functionality,
context and adaptivity to user preferences and intentions, end-devices,
and channel limitations. In this case the queries defining the views must
be highly expressive, as they must involve the creation of abstract iden-
tifiers, complex values and links. We extend the transformation rules to
cope with these requirements.

View cooperation provides an alternative to view integration in
which the integrated view is only virtual. That is the constituting views
are kept and exchange functions are designed to provide the same func-
tionality as if the views were integrated.

Keywords: view integration, schema equivalence, data warehouses, web
information systems, view cooperation

� The work in this paper was supported by FRST/NERF grant MAUX0025 “DIMO –
Distributed Multi-Level Object Bases” and MU/ABRF grants 57413 “Foundations
of Conceptual Modelling” and 57501 “Distributed Data Warehouses”.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 213–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

214 H. Ma et al.

1 Introduction

Database schema integration is an old issue that has attracted a lot of research
[12,13,14,16,30]. The starting point for schema integration is a set of schemata
over some data models. Usually the focus is on two schemata over the same
data model. If the underlying data models differ, then we may assume some
preprocessing transforming both schemata – or one of them, if this is sufficient –
into an almost equivalent schema over a data model with higher expressiveness.
Then schema integration aims at replacing the given schemata by a single new
one in such a way that the new schema dominates or is equivalent to the old
ones.

A view on some database schema consists of another schema called the target
schema, and a defining query, which maps instances of the source schema to
instances of the target schema. If we integrate the target schemata of views we
talk of view integration [3,29,30]. In this case we obtain embeddings for each
target schema into the new schema. If these embeddings are coupled with the
defining queries for the given views we obtain a new defining query, i.e. we obtain
not only an integrated target schema, but an integrated view.

So the first thing we need is a theory of schema equivalence and dominance.
Roughly, we may say that two schemata are equivalent, if they have the same
information capacity, i.e. we may store the same information in both schemata.
A schema dominates another one, if it has a larger information capacity. Various
formal definitions for equivalence and dominance have been given [9,19,30] and
compared in [15,16]. Here we extend this work and introduce novel definitions
for equivalence and dominance based on computable queries [5,34], i.e. we base
the transformation functions on the most general notion of query, but we discard
total arbitrariness, as computable queries must respect isomorphisms. We com-
pare the new notions with the ones defined in [9,19,30]. We base this comparison
on the higher-order Entity-Relationship model (HERM) [30].

On this basis we then reconsider schema integration following the framework
in [15,16]. In a nutshell, we first “clean” the given schemata by removing name
conflicts, synonyms and homonyms, then we add inter-schema constraints, which
leads to a single constrained schema, which is just the union of the given ones. To
this schema we then apply formal equivalence transformation or augmentation
rules, which will finally take us to an integrated schema that is either equivalent
to the union of the given ones or dominates this.

One group of rules addresses the restructuring of the complex attributes,
entity types, relationship types and clusters. Another group of rules considers
the shifting of attributes over hierarchies and paths. A third group of rules deals
with selected integrity constraints such as keys, functional, inclusion and join
dependencies, cardinality constraints and path constraints. A fourth group of
rules is devoted to aggregation, decomposition, specialisation and generalisation.

The transformation rules can be used as well for view cooperation [15,28,30],
which provides an alternative to view integration in which the integrated view
is only virtual. That is the constituting views are kept and exchange functions
are designed to provide the same functionality as if the views were integrated.

View Integration and Cooperation 215

Views are important for user interfaces. In [21] an integrated concept of di-
alogue type was developed, which combines views with operations defined on
them. As conceptual interface specifications are a viable source during the sys-
tems development process, the problem of view integration comes up naturally.
With respect to the transformation rules, we now need an extension that deals
with the operations.

Data Warehouses are data-intensive systems that are used for analytical
tasks in businesses such as analysing sales/profits statistics, cost/benefit relation
statistics, customer preferences statistics, etc. The term used for these tasks is
“on-line analytical processing” (OLAP) [33] in order to distinguish them from
operational data-intensive systems, for which the term “on-line transaction pro-
cessing” (OLTP) has become common. The idea of a data warehouse [11] is to
extract data from operational databases and to store them separately. Thus, a
first problem in data warehouse design is to integrate views from various source
databases. This point of view of data warehouse design as a view integration
problem has been strongly promoted in [12,32,36]. In fact, there is another re-
lated problem in here, the support of OLAP applications by materialised views,
which in their totality reflect the data warehouse. In this sense data warehouses
also involve a view design problem.

In [17] dialogue types have been applied to data warehouses and OLAP
systems. The principle result states that OLAP functionality corresponds to
operations on views over the data warehouse. So we may apply our extended
transformation rules to this problem. In fact, the main idea of data warehouses
implies a separation of input from operational databases and output to views
that contain the data for particular OLAP tasks. This implies a three-layer
architecture for data warehouses and OLAP systems [38], which is the basis of
a formal design approach for such systems [26,37].

In the field of web information systems (WISs) the importance of views is
commonly accepted [2,4,24,25]. In [7,6] the notion of media type has been intro-
duced. A media type is an extended view over some underlying database. How-
ever, different to the approaches in [2,4] the defining query already constructs the
navigation structure. Furthermore, media types are prepared for dynamic WISs
[18] by adding operations, and for adaptivity by adding cohesion preorders. As
a consequence, transformation rules for the purpose of media type integration
have to extend the view integration rules in a way that cohesion is covered as
well. In this article we will develop these extensions.

Outline. We start in Section 2 with a look at published work on the topic of this
article. In Section 3 we describe the basics of HERM emphasising our approach
to schema equivalence and dominance. Section 4 is devoted to the process of
schema and view integration. We describe first the process in general followed
by a presentation of the transformation rules for this process. We also show
how these rules can be used for view cooperation instead of integration. Section
5 applies the integration framework to data warehouses and OLAP systems.
We emphasise the particular case of view integration and indicate additional
rules dealing with the adaptation of dialogue operations. In Section 6 we briefly

216 H. Ma et al.

present media types, i.e. other extended views that are used for web information
systems. We particularly focus on the aspect of adaptivity for which we discuss
cohesion. This is followed by an extension to the transformation rules dealing
with the implications of view integration to cohesion. We conclude with a short
summary and discussion of further research directions.

2 Related Work

The work on view integration in [13,14,29] is based on the Entity-Relationship
model. Larson et al. [14] consider containment, equivalence and overlap relations
between attributes and types that are defined by looking at “real world objects”.
Equivalence between types gives rise to their integration, containment defines
a hierarchy with one supertype and one subtype, and overlapping gives rise to
new common supertype. The work by Spaccapietra and Parent [29] considers
also relationships, paths and disjointness relations between types. The work by
Koh et al. [13] provides additional restructuring rules for the addition or removal
of attributes, generalisation and specialisation, and the introduction of surrogate
attributes for types.

The work by Biskup and Convent in [3] is based on the relational data model
with functional, inclusion and exclusion dependencies. The method is based on
the definition of integration conditions, which can be equality, containment, dis-
jointness or selection conditions. Transformations are applied aiming at the elim-
ination of disturbing integration conditions. In the same way as our work it is
based on a solid theory. On the other hand, it has never been applied to large
systems in practice. The approach by Sciore et al. in [28] investigates conver-
sion functions on the basis of contexts added to values. These contexts provide
properties to enable the semantic comparability of values.

The work by Lehmann and Schewe [15,16] assumes that the given schemata
are defined on the basis of the higher-order Entity-Relationship model (HERM)
[30] which is known to provide enough expressiveness such that schemata existing
in practice can be easily represented in HERM. The work relies on the notions
of equivalence and dominance as defined for HERM in [30].

In [15,16] these notions of equivalence and dominance are also compared with
those defined by Hull [9] and Qian [19]. Basically, the four different notions of
schema dominance introduced by Hull differ by the way the transformation func-
tions are defined. In the simplest case (calculus dominance) they correspond to
calculus queries, whereas in the most general case (absolute dominance) there
are no restrictions at all. In fact, taking computable queries will remove the ar-
bitrariness from absolute dominance that has been criticised in [19] while taking
into account the most general form of queries [5,34].

The design of data warehouses and OLAP applications has been intensively
studied. Widom [36] and Theodoratos [32] emphasise that data warehouse design
is mainly a view integration problem, Whereas Lewerenz et al. [17], Thomson
[33], and Zhao and Schewe [26,37,38] also take the OLAP functionality into
account.

View Integration and Cooperation 217

The design and development of WISs has attracted a lot of attention. The
ARANEUS framework in [2] emphasises that conceptual modelling of web infor-
mation systems should approach a problem triplet consisting of content, naviga-
tion and presentation. This leads to modelling databases, hypertext structures
and page layout. OOHDM [27] is quite similar to ARANEUS, but its origins
are not in the area of databases but in hypertext and it explicitly refers to
an object oriented approach. OOHDM emphasises an object layer, hypermedia
components, i.e. links, and an interface layer. The work in [8] also starts from hy-
pertext design. The work introduces “authoring in the large”, i.e., the conceptual
modelling of information elements and navigation, and uses this to categorise dif-
ferent types of links. Another similar approach is WebML [4], which emphasises
a multi-level architecture for the data-driven generation of WIS, thus takes the
view aspect into account. Furthermore, it emphasises structures, derivation and
composition, i.e. views, navigation and presentation, thus addresses the same
problem triplet as the ARANEUS framework.

Our own work on WIS design combines the usage-oriented storyboarding
methodology [22,23,31] and the content- and functionality-oriented theory of
media types [6,20,24], which are embedded in an integrated co-design method-
ology based on an abstraction layer model [25].

3 Schemata, Equivalence and Dominance

As we will base our presentation on the higher-order Entity-Relationship model
(HERM) [30], we start with a brief review of the model as far as it is important
for our purposes here. In particular, we focus on algebraic and logical query
languages for HERM. These will be needed to address the important issue of
defining schema dominance and equivalence in a way that the expressiveness is
sufficient for the integration of extended views as needed for data warehouses
and web information systems. The basic case dealing only with plain views over
HERM schemata, i.e. ignoring the extensions by operations, adaptivity, etc. was
already handled in [15,16].

3.1 HERM

The major extensions of the HERM compared with the flat ER model con-
cern nested attribute structures, higher-order relationship types and clusters, a
sophisticated language of integrity constraints, operations, dialogues and their
embedding in development methods. Here we only review some of the structural
aspects.

In the following let A denote some set of simple attributes . Each simple
attribute A ∈ A is associated with a base domain dom(A), which is some fixed
countable set of values. The values themselves are of no particular interest.

In HERM it is permitted to define nested attributes. For this take a set
L of labels with the only restriction that labels must be different from simple
attributes, i.e. L ∩ A = ∅.

218 H. Ma et al.

Definition 3.1. A nested attribute is either a simple attribute, the null at-
tribute ⊥, a tuple attribute X(A1, . . . , An) with pairwise different nested at-
tributes Ai and a label X ∈ L or a set attribute X{A} with a nested attribute
A and a label X ∈ L. Let NA denote the set of all nested attributes.

We extend dom to nested attributes in the standard way, i.e. a tuple attribute
will be associated with a tuple type, a set attribute with a set type, and the null
attribute with dom(⊥) = 1l, where 1l is the trivial domain with only one value.

In principle we could also permit other constructors than tuple and set con-
structors, e.g. constructors 〈·〉 and [·] for multisets and lists. This would, however,
only complicate our presentation here without leading to additional insights. We
therefore disregard these other constructors.

On nested attributes we have a partial order ≥ defined as follows.

Definition 3.2. ≥ is the smallest partial order on NA with

– A ≥ ⊥ for all A ∈ NA,
– X{A} ≥ X{A′} ⇔ A ≥ A′ and
– X(A1, . . . , An) ≥ X(A′

1, . . . , A
′
m) ⇔

∧
1≤i≤m

Ai ≥ A′
i.

A generalised subset of a set F ⊆ NA of nested attributes is a set G ⊆ NA
of nested attributes such that for each A′ ∈ G there is some A ∈ F with A ≥ A′.

It is easy to see that X ≥ X ′ gives rise to a canonical projection πX
X′ :

dom(X) → dom(X ′).
Let us now define the entity and relationship types and clusters in HERM

using the following compact definition.

Definition 3.3. A level-k-type R consists of a set comp(R) = {r1 : R1, . . . , rn :
Rn} of labelled components with pairwise different labels ri, a set attr(R) =
{A1, . . . , Am} of nested attributes and a key key(R). Each component Ri is a
type or cluster of a level at most k − 1, but at least one of the Ri must be
level-(k − 1)-type or -cluster.

For the key we have key(R) = comp′(R)∪attr ′(R) with comp′(R) ⊆ comp(R)
and a generalised subset attr ′(R) of the set of attributes.

A level-k-cluster is C = R1 ⊕ · · · ⊕ Rn with pairwise different components
Ri, each of which is a type of a level at most k. At least one of the Ri must be
level-k-type.

The labels ri used in components are called roles . Roles can be omitted in
case the components are pairwise different. A level-0-type E – here the definition
implies comp(E) = ∅ – is usually called an entity type, a level-k-type R with
k > 0 is called a relationship type.

A HERM schema is a finite set S of entity types, relationship types and
clusters together with a set Σ of integrity constraints defined on S. We write
(S, Σ) for a schema, or simply S, if Σ = ∅.

Note that the notion of level has only been introduced to exclude cycles in
schemata. Besides this it has no other meaning. Conversely, if there are no cycles
in a schema, then there is a straightforward way to assign levels to the types and
clusters in the schema such that the conditions in Definition 3.3 are satisfied.

View Integration and Cooperation 219

Security Mortgage Loan_Type Personal_Loantype typefor

Customer

w
h

o
se

Owes

Loan

who what

Income Obligation Account Account_Record
a

w
h

o who ln

accountamount
type

frequency

customer_no

name

address

date_of_birth

object

value

type

account

type

amount

frequency

begin

end

mortgage_no

amount
disagio

begin

interest_rate

object end

type conditions

interest
loan_no amount

begin

end

interest_rate
terms_of_payment

account_no

balance

record_no

amount

type

date

Fig. 1. HERM diagram for loan application

Example 3.1. The following type definitions define a HERM schema for a loan
application as it might be used by some bank:

Loan Type = (∅, { type, conditions, interest }, { type })
Customer = (∅, { customer no, name, address, date of birth },

{ customer no })
Personal Loan = ({ type : Loan Type }, { loan no, amount,

interest rate, begin, end, terms of payment }, { loan no })
Mortgage = ({ type : Loan Type }, { mortgage no, amount, disagio,

interest rate, begin, end, object }, { mortgage no })
Loan = Home Loan ⊕ Mortgage

Account = ({ ln : Loan }, { account no, balance }, { account no })
Account Record = ({ a : Account }, { record no, type, amount,

date }, { a : Account, record no })
Owes = ({ who : Customer, what : Loan }, { begin, end },

{ who : Customer, what : Loan, begin })
Security = ({ whose : Customer, for : Mortgage }, { value, object,

type }, {whose : Customer, for : Mortgage, object })
Income = ({ who : Customer }, { type, amount, frequency, account },

{ who : Customer, account })
Obligation = ({ who : Customer }, { type, amount, frequency,

account }, { who : Customer, account })

For this it is easy to see that the types Customer and Loan Type are
on level 0, because they do not have components. Level-1-types are Income,

220 H. Ma et al.

Obligation, Mortgage and Personal Loan, because all their components
are on level 0. Consequently, the cluster Loan ist a level-1-cluster. The types
Owes, Security and Account are then level-2-types, because all components
are on level 1 or below, and finally, Account Record is a level-3-type.

Figure 1 provides a graphical representation of the schema in Example 3.1.
We call this a HERM diagram. According to the common convention in Entity-
Relationship diagrams we represented types on level 0 by rectangles and types
on higher levels by diamonds. Clusters are represented by ⊕. We use directed
edges from a relationship type to each of its components, and from clusters
to their components, and undirected edges between types and their attributes.
Roles names are attached to the directed edges. Keys are marked by underlining
attributes and marking the edges that correspond to components in the key by
some dot.

As each HERM schema can be represented by such a HERM diagram, i.e. by
a graph, we can apply all graph-theoretic notions. In particular, when we talk of
paths in a HERM schema, we mean a path in the underlying undirected graph
that results from ignoring the orientation of edges in the HERM diagram.

In order to define the semantics of HERM schemata we concentrate on
identifier-semantics, also known as pointer-semantics. For this assume a count-
able set ID of identifiers with ID ∩ D = ∅ for all domains D used for simple
attributes. Furthermore, we associate with each type R ∈ S a representing at-
tribute

XR = R(Xr1 , . . . , Xrn , A1, . . . , An)

with new simple attributes Xri for each role ri and dom(Xri) = ID, as well as a
key attribute

KR = R(Xri1
, . . . , Xri�

, A′
1, . . . , A

′
m)

for key(R) = {ri1 : Ri1 , . . . , ri�
: Ri�

, A′
1, . . . , A

′
m}. Obviously, we have XR ≥ KR.

Definition 3.4. An instance of a HERM schema (S, Σ) is a family {db(R)}R∈S
of finite sets. For each type R the set db(R) consists of pairs (i, v) with i ∈ ID
and v ∈ dom(XR) subject to the following conditions:

– Identifiers are globally unique, i.e. whenever (i, v1) ∈ db(R1) and (i, v2) ∈
db(R2) hold, we must have R1 = R2 and v1 = v2.

– Key values are locally unique, i.e. whenever (i1, v1), (i2, v2) ∈ db(R) hold
with πXR

KR
(v1) = πXR

KR
(v2), then we must have i1 = i2.

– Roles are always defined, i.e. whenever (i, v) ∈ db(R) and πXRR(Xrij
)(v) =

i′ for rij : Rij ∈ comp(R), then (i′, v′) ∈ db(Rij) for some v′ ∈ dom(XRij
).

– The integrity constraints in Σ are satisfied.

For each cluster C = R1 ⊕ · · · ⊕Rk the set db(C) is the disjoint union of the
sets db(Ri) (i = 1, . . . , k).

We write inst(S, Σ) for the set of all instances over (S, Σ).

View Integration and Cooperation 221

3.2 Query Languages for HERM

As for the relational data model, basic queries against a HERM schema can
be formulated both in an algebraic and a logical way. We will extend both the
simple HERM algebra and the HERM calculus in a way that we can express
more queries, but let us start with first-order queries.

Definition 3.5. The HERM algebra H provides the operations σϕ (selection)
with a selection formula ϕ, πA1,...,Am (projection) with a generalised subset
{A1, . . . , Am}, �f (renaming) with a renaming function f , ��G (join) with a com-
mon generalised subset G, ∪ (union), − (difference), νX:A1,...,An with attributes
A1, . . . , An (nest), and μA (unnest) with a set attribute A.

As the details of these operations are not much different from the relational
data model, we omit the details and refer to [30].

However, in order to make the HERM algebra operational for our purposes
here, we need a little extension:

– We permit new type names R to be added to S, and use assignments R :=
exp with a HERM algebra expression exp. Then applying such a query to
an instance of (S, Σ) results in an instance over (S ∪ {R}, Σ). The type or
cluster definition for R is implicitly determined by the expression exp.

– In order to satisfy the global uniqueness of identifiers, such an assignments
involve the non-deterministic creation of identifiers in ID for the pairs (i, v)
in the added db(R). Such identifier creation has been investigated thoroughly
in [35].

– While sequences of assignments only extend the schema, we also allow to
drop types or clusters.

In summary, a HERM algebra program P has the form C1; . . . ; Cr \S′, where
each Ci is an assignment, say Ri : +expi that extends the schema by Ri and the
instance by db(Ri), while S′ is a subschema of S ∪{R1, . . . , Rr}. Thus, P defines
a mapping q(P) taking instances over (S, Σ) to instances over (S′, Σ′), though
the set Σ′ of constraints is left implicit.

The algebra may be further extended with WHILE, in which case we talk of
the extended HERM algebra Hext. In this case we add constructs of the form

WHILE change DO C1; . . . ; Cr END.

We obtain a logical perspective from the following simple observation. Each
type R ∈ S – or more precisely, its representing attribute XR – defines a vari-
able in a higher-order logic. The order depends on the depth of nesting of the
attributes in attr(R). For instance, if the set constructor is not used, we obtain a
first-order variable. In fact, we obtain a type for each such variable, where types
correspond to nested attributes. Thus, a schema defines a signature, and each
instance defines a finite structure for this signature.

There are a few subtleties to be aware of. First, for clusters we have to allow
particular union variables to cope with the requirement to have disjoint unions.

222 H. Ma et al.

Second, we have to define first the logic and then permit only those structures
that are in fact models for the theory defined by the restrictions in Definition
3.4.

Now use further variables and constants of any available type and define
atoms as follows:

– A predicative atom has the form X(t1, . . . , tn) with a higher-order variable
X and terms, i.e. variables or constants, t1, . . . , tn such that the types of the
ti and the one of X match properly.

– An equational atom has the form t1 = t2 with terms of the same type or
of different types, where one is a cluster and the other one is one of its
components.

Finally, use the usual connectives ∧, ∨, →, ∃ and ∀ to define HERM logic.
Then the concept of free and bound variables is defined as usual. We write fr(ϕ)
for the set of free variables of a formula ϕ.

Definition 3.6. A HERM calculus query has the form X(x0, . . . , xn) : ϕ with a
formula ϕ of HERM logic such that fr(ϕ) ⊆ S∪{x1, . . . , xn} and {x1, . . . , xn} ⊆
fr(ϕ).

Obviously, we may interpret a formula ϕ provided we are given a value as-
signment σ(xi) for all the variables x1, . . . , xn and an instance over (S, Σ). If
according to this interpretation the formula ϕ is interpreted as true, we obtain a
tuple (σ(x0), . . . , σ(xn)) with a new identifier σ(x0) ∈ ID . The result is the set
of all such tuples, and will be bound to variable X .

It can be shown that such HERM calculus queries express exactly the same
as HERM algebra queries with non-deterministic identifier creation and assign-
ments to new type variables. Using sequences and a fixed-point construction
yields the same expressiveness as the extended HERM algebra. We use the term
extended HERM calculus for this approach to query languages.

Let us finally extend the discussion on queries to computable queries in the
spirit of [5]. Computable queries are defined on a semantic rather than a syn-
tactic level. A query language that can express all computable queries is called
complete, but this has to be verified. It is known that the calculus and algebra
queries defined so far (even in their extended form) are not complete.

Roughly speaking, a computable query is a query that commutes with isomor-
phisms. So we have to define a concept of isomorphism for HERM instances. For
this consider bijections ψA : dom(A) → dom(A) for each simple attribute A ∈ A
and ψID : ID → ID. We call this family Ψ = {ψA}A∈A∪{ID} a t-isomorphism.
Obviously, we may extend Ψ to all nested attributes defining

ψX(A1,...,An)(v1, . . . , vn) = (ψA1(v1), . . . , ψAn(vn))

and

ψX{A}({v1, . . . , vn}) = {ψA(v1), . . . , ψA(vn)}.

View Integration and Cooperation 223

In particular, a t-isomorphism Ψ induces a mapping ΨS : inst(S, Σ) →
inst(S, Σ).

Definition 3.7. Two instances db1 and db2 over (S, Σ) are called isomorphic
(notation: db1 # db2) iff there exists a t-isomorphism Ψ with ΨS(db1) = db2.

A computable query on a database schema (S, Σ) with output schema (S′, Σ′)
is a partial recursive function q : inst(S, Σ) → inst(S′, Σ′) mapping isomorphic
databases to isomorphic databases, i.e.,

db1 # db2 ∧ q(db1) ↓ ⇒ q(db2) ↓ ∧ q(db1) # q(db2),

where q(db1) ↓ means that the partial recursive function q is defined on db1.

3.3 Schema Dominance and Equivalence

As already stated schema and view integration requires precise notions for
schema dominance and equivalence, which we will introduce now.

Definition 3.8. A HERM schema (S′, Σ′) dominates another HERM schema
(S, Σ) by means of the language L (notation: (S, Σ) !L (S′, Σ′)) iff there are
mappings f : inst(S, Σ) → inst(S′, Σ′) and g : inst(S′, Σ′) → inst(S, Σ) both
expressed in L such that the composition g ◦ f is the identity.

If we have (S, Σ) !L (S′, Σ′) as well as (S′, Σ′) !L (S, Σ), we say that the
two schemata are equivalent with respect to L (notation: (S, Σ) ∼=L (S′, Σ′)).

According to our discussion of HERM query languages in the previous sub-
section we obtain three different notions of dominance and equivalence. !H and
∼=H refer to the use of the HERM algebra or equivalently the HERM calcu-
lus as the language, in which the transformations f and g are to be expressed.
Analogously, !Hext and ∼=Hext refer to the use of the extended HERM algebra
or the extended HERM calculus. Finally, !comp and ∼=comp refer to the use of
computable queries. According to these choices we talk of HERM dominance,
extended HERM dominance and computable dominance, respectively.

For completeness, let us mention a fourth alternative. If we do not impose
any restrictions on the language L, i.e. f is any injective and g any surjective
mapping, then we obtain absolute dominance !abs and absolute equivalence ∼=abs.
In the following sections we will always refer to !comp and ∼=comp and therefore
drop the index and simply write ! for dominance and ∼= for equivalence.

In the literature several other notions of schema dominance and equivalence
have been introduced. Hull in [9] introduces four different notions on the basis of
the relational data model. In the case of calculus dominance !calc the mappings
f and g must be defined by safe relational calculus or equivalently the relational
algebra. In the case of generic dominance !gen the mappings f and g must
be generic in the sense that they commute with permutations of domain values
fixing only a finite set Z of values. In the case of internal dominance !int the
mappings f and g may only introduce a finite set of new values. Finally, Hull
also defines absolute dominance.

224 H. Ma et al.

�gen

�int

�H

�Hext

�comp

�abs

�calc

�ADT

Fig. 2. Relationship between schema dominance notions

All these notions can be generalised to HERM schemata. For instance, the
work in [10] uses the same absolute dominance relation as [9] without referring
explicitly to the relational model. In [9] it has been shown that calculus domi-
nance implies generic dominance, which itself implies internal dominance, which
implies absolute dominance. All these implications are strict. In [15] it has been
shown that calculus dominance implies HERM dominance !H, which implies
generic dominance. Of course, both in internal dominance and extended HERM
dominance we have to deal with computable queries, so both imply computable
dominance.

ADT dominance as defined by Qian [19] is based on order-sorted signatures
and algebras. A schema transformation, i.e. our f , must be defined as a signature
interpretation. It has been shown in [19] that calculus dominance implies ADT
dominance, which implies absolute dominance. These implications are strict. Fur-
thermore, ADT dominance is incomparable with the other notions of dominance
as defined by Hull. In [15] it has been shown that ADT dominance and HERM
dominance are also incomparable. However, the transformations defined by Qian
define computable queries, so ADT dominance implies computable dominance.

Figure 2 illustrates the relationship between the various notions of schema
dominance. We base our work on computable dominance, because absolute dom-
inance is too general. It does not really preserve the semantics of the original
schemata. On the other hand, extended HERM dominance, internal dominance
and ADT dominance are pairwise incomparable, but all three notions make per-
fect sense in that the examples that can be expressed in them (but maybe not
in the other formalisms) are reasonable. Therefore, computable dominance has
been chosen, because it covers all reasonable notions of dominance without run-
ning into the problems arising from absolute dominance. However, computable
dominance still leaves a lot of latitude for schema integration, and in most prac-
tical cases this latitude will not be exploited, i.e. a weaker notion of dominance
would be sufficient.

View Integration and Cooperation 225

4 Schema and View Integration and Cooperation in
Databases

In this section we address first schema integration in databases following [16].
Without loss of generality we assume that we are given only two HERM schemata
(S1, Σ1) and (S2, Σ2). Before starting the integration process we assume that
these schemata have been “cleaned”, i.e. we assume that all name clashes have
been removed by renaming homonymous attributes. Ideally, we may assume that
names used in both schemata are different.

4.1 Schema and View Integration Process

We first describe a pragmatic method for schema integration, and then explain
how this method applies to view integration. The details are then filled by trans-
formation rules described in the following subsections.

1. The first step is the homogenisation of the schemata. This includes the re-
structuring of the schemata turning attributes into entity types, entity types
into relationship types and vice versa. Furthermore, we add attributes and
shift attributes along hierarchies and paths. All these individual paces corre-
spond to the application of transformation rules. The result of the homogeni-
sation step are schemata (S′

1, Σ
′
1) and (S′

2, Σ
′
2).

2. The second step consists in adding inter-schema integrity constraints that
describe the semantic relationships between the two schemata. Formally, we
obtain another set of constraints Σ0, and thus the result of this step is a
single HERM schema (S′

1 ∪ S′
2, Σ

′
1 ∪Σ′

2 ∪Σ0).
3. The third step is only a preparation of the following steps. Due to the ex-

pected large size of the schemata, these are divided into modules, each of
which describes a subschema. Corresponding modules are identified in order
to approach the integration of modules first. If schemata are of moderate
size, this step can be omitted.

4. Step four considers the integration of types on level 0, 1, etc., i.e. we start
with entity types and level-0-clusters, then proceed with relationship types
and clusters on level 1, then relationship types and clusters on level 2, etc.
For each level we integrate corresponding types or clusters with respect to
equality, containment, overlap and disjointness conditions. Note that this
step is similar to the work done in [13,14,29].

5. The fifth step deals with the integration of paths using path inclusion de-
pendencies.

6. Finally, we consider remaining integrity constraints such as (path) functional
dependencies and join dependencies.

Let us now see how this method deals with view integration. First recall that
a view is nothing but a stored query.

Definition 4.1. A view V on a HERM schema (S, Σ) consists of a schema SV

and a query qV with a query mapping inst(S, Σ) → inst(SV).

226 H. Ma et al.

Example 4.1. Let S1 be the HERM schema from Example 3.1. Let us define a
view V1 = Customer Credibility on this schema, in which the target schema
SV1 consists of a single entity-type

Customer Cr = (∅, {customer no, name, date of birth,
inc oblig{(type, amount, frequency)},
loans{(type, amount, account balance)}},

{customer no})

What we want to obtain is the set of all customers with their customer
number, name and date of birth, plus their set of incomes and obligations (each
described by their type, amount and frequency of payment), plus their set of
loans (each described by their type, amount and corresponding account balance).

The defining query for this view is a bit tricky, as it has to involve the
construction of two set-valued attributes. Following [25] we could employ a gen-
eralised nest-operation or use an IQL-like logic program, which would look as
follows:

C(ic, c, n, b, O, L) ←Customer(ic, (c, n, a, b));

L̂(“mortgage”, a, c) ←Mortgage(im, (ilt, m, a, d, p, b, e, o)),
Loan(il, (mortgage : im)),
Account(ia, (il, n, c),
Owes(io, (ic, il, b′, e′),
C(ic, cc, nc, bc, O, L).

L̂(“personal”, a, c) ←Personal Loan(ipl, (ilt, l, a, p, b, e, t)),
Loan(il, (personal : ipl)),
Account(ia, (il, n, c),
Owes(io, (ic, il, b′, e′),
C(ic, cc, nc, bc, O, L).

Ô(“income”, a, f) ←C(ic, cc, nc, bc, O, L),
Income(ii, (ic, c, a, t, f)).

Ô(“obligation”, a, f) ←C(ic, cc, nc, bc, O, L),
Obligation(io, (ic, c, a, t, f));

Customer Cr(i, (c, n, b, Ô, L̂)) ←C(ic, c, n, b, O, L).

In a nutshell – without going into formal details – this logic program is a
sequence of clause sets, separated by a semicolon. These clause sets are evaluated
sequentially. Each clause set itself is evaluated by computing an inflationary fixed
point, i.e. for each clause we bind the variables on the right hand side using the
given instance of the database, and add the corresponding value for the left hand

View Integration and Cooperation 227

side to the database. The interesting point is that the variables that only occur
on the left hand side will be bound to new identifiers, and for each such variable
X we obtain a new predicate X̂ so that we can compute a set corresponding to
each identifier.

In our special case here, we first construct a set C of customers with their
identifier ic, customer number c, name n, date of birth b and identifiers O and L
representing the set of obligations and loans, respectively. In the second clause
set we construct the corresponding sets Ô and L̂ of obligations and loans, respec-
tively, for each customer in C. In the final clause set we replace the identifiers
O and L by the corresponding sets Ô and L̂, respectively, and create a new
identifier i for each element of the result.

So the view integration problem starts with two views V1 and V2 on the same
HERM schema (S, Σ), and should result in a new integrated view V such that
SV results from integration of the schemata SV1 and SV2 , and for each instance
db over (S, Σ) the two query results qV1(db) and qV2(db) together are equivalent
to qV (db).

Now, if the schemata SV1 and SV2 are “cleaned”, we may combine the queries
qV1 and qV2 into one yielding a query mapping inst(S, Σ) → inst(SV1 ∪ SV2)
defined by the query qV1 ∪ qV2 . If we simply integrate the schemata SV1 and
SV2 into SV according to the method described above, we obtain an induced
mapping f : inst(SV1 ∪SV2) → inst(SV). As we deal with computable queries, f
is the query mapping of some computable query qf . Taking qV = qf ◦ (qV1 ∪qV2),
V becomes a view over (S, Σ) with schema SV and defining query qV .

This approach to view integration also works in the more general situation,
where the given views V1 and V2 are defined over different schemata (S1, Σ2)
and (S2, Σ2), respectively.

4.2 Transformation Rules

In the following subsections we describe transformation rules in detail. All rules
will be presented in the same way, i.e. we assume a given HERM schema (S, Σ),
but we only indicate parts of it. The resulting schema will be (Snew , Σnew). The
new types in the new schema will be marked with a subscript new. With these
conventions the rules will be self-explanatory.

All the rules in this subsection subsume the rules that have been stated
implicitly or explicitly in former work by others. In addition, the rules will es-
tablish computational equivalence in all cases, but formal proofs – which are
not too hard – have been omitted. So what we can expect from our approach
is soundness, but not completeness. The non-completeness results from the fact
that computational dominance would allow us to define more general rules. It
is very unlikely that there will exist a complete set of rules. On the other hand,
having used the notion of computational dominance permits openness, i.e. the
set of rules can be extended, if such a need arises.

228 H. Ma et al.

Schema Restructuring. The first group of rules addresses the aspect of
schema restructuring which will be used in the homogenisation step 1 of our
method.

Rule 1. Replace a tuple attribute X(A1, . . . , Am) in an entity or relationship
type R by the attributes A1, . . . , Am. The resulting type Rnew will replace R.
For X(A′

1, . . . , A
′
n) ∈ key(R) with Ai ≤ A′

i we obtain A′
1, . . . , A

′
n ∈ key(R′).

This rule includes the simple case, where R is an entity type, which could be
treated as a separate rule.

Rule 2. Replace a component r : R′ in a relationship type R by lower level
components and attributes. Let the new type be Rnew. For comp(R′) = {r1 :
R1, . . . , rn : Rn} we get comp(Rnew) = comp(R)−{r : R′}∪{r(r)

1 : R1, . . . , r
(r)
n :

Rn} with new role names r
(r)
i composed from ri and r and attr(Rnew) =

attr(R)∪ attr(R′). In the case r : R′ ∈ key(R) and key(R′) = {ri1 : Ri1 , . . . , rik
:

Rik
, A1, . . . , Am} we obtain key(Rnew) = key(R)−{r : R′}∪{r(r)

i1
: Ri1 , . . . , r

(r)
ik

:
Rik

, A1, . . . , Am}, otherwise we have key(Rnew) = key(R).

It is easy to see how to simplify this rule in the case, where R′ is an entity
type. Again, this could by formulated by two separate rules.

Rule 3. Replace a cluster C = C1 ⊕ · · · ⊕ Cn with a cluster component Ci =
Ci1 ⊕ · · ·⊕Cim by a new cluster C = C1⊕ · · ·⊕Ci−1⊕Ci1 ⊕ · · ·⊕Cim ⊕Ci+1⊕
· · · ⊕ Cn.

Rule 4. Replace a relationship type R with a cluster component r : C (C =
C1 ⊕ · · · ⊕ Cn) by a new cluster Cnew = R1,new ⊕ · · · ⊕ Rn,new and new rela-
tionship types Ri,new with comp(Ri,new) = comp(R) − {r : C} ∪ {ri : Ci} and
attr(Ri,new) = attr(R). For r : C ∈ key(R) we obtain key = key(R) − {r :
C} ∪ {r : Ci}, otherwise take key = key(R).

In the case of the restructuring rules 1 – 4 we can always show that the
original schema and the resulting schema are equivalent. The next rule only
guarantees that the resulting new schema dominates the old one.

Rule 5. Replace a key-based inclusion dependency R′[key(Ri)] ⊆ R[key(R)] by
new relationship types R′

new with comp(R′
new) = {r′ : R′, r : R} = key(R′

new)
and attr(R′

new) = ∅ together with participation cardinality constraints
card(R′

new, R) = (0, 1) and card(R′
new , R′) = (1, 1).

The last two restructuring rules allow to switch between attributes and entity
types and between entity and relationship types. These rules 6 and 7 guarantee
schema equivalence.

Rule 6. Replace an entity type E with A ∈ attr(E) by Enew such that
attr(Enew) = attr(E)− {A} holds. Furthermore, introduce an entity type E′

new

with attr(E′
new) = {A} = key(E′

new) and a new relationship type Rnew with
comp(Rnew) = {rnew : Enew , r′new : E′

new} = key(Rnew) and attr(Rnew) = ∅.
Add the cardinality constraints card(Rnew, Enew) = (1, 1) and card(Rnew , E′

new)
= (1,∞).

View Integration and Cooperation 229

Rule 7. Replace a relationship type R with comp(R) = {r1 : R1, . . . , rn : Rn}
and the cardinality constraints card(R, Ri) = (xi, yi) by a new entity type Enew

with attr(Enew) = attr(R) = key(Enew) and n new relationship types Ri,new

with comp(Ri,new) = {ri : Ri, r : Enew} = key(Ri,new) and attr(Ri,new) = ∅.
Replace the cardinality constraints by
card(Ri,new , Ri) = (1, yi) and card(Ri,new , Enew) = (1,∞).

In the case of rule 7 explicit knowledge of the key of R allows to sharpen the
cardinality constraints.

Shifting Attributes. The second group of rules deals with the shifting of
attributes. This will also be used in the homogenisation step 1 of our method.
Rule 8 allows to shift a synonymous attribute occurring in two subtypes, i.e.
whenever tuples agree on the key they also agree on that attribute, to be shifted
to a supertype. This rule leads to a dominating schema. Conversely, rule 9 al-
lows to shift an attribute from a supertype to subtypes, in which case schema
equivalence can be verified.

Rule 8. For comp(Ri) = {ri : R} and Ai ∈ attr(Ri) − key(Ri) (i = 1, 2) to-
gether with the constraint ∀t, t′.t[key(R1)] = t′[key(R2)] ⇒ t[A1] = t′[A2] replace
the types R, R1 and R2 such that attr(Rnew) = attr(R)∪{Ai}, comp(Ri,new) =
{ri : Rnew} and attr(Ri,new) = attr(Ri)− {Ai} hold.

Rule 9. For comp(Ri) = {ri : R} (i = 1, . . . , n) and A ∈ attr(R) − key(R)
together with the constraint ∀t ∈ R.∃t′ ∈ Ri.t

′[ri] = t replace the types such that
attr(Rnew) = attr(R) − {A}, comp(Ri,new) = {ri : Rnew} and attr(Ri,new) =
attr(Ri) ∪ {A} hold.

The next two rules 10 and 11 concern the reorganisation of paths and the
shifting of attributes along paths. In both cases we obtain a dominating schema.
Rule 10 could be split into two rules dealing separately with binary and unary
relationship types Rn.

Rule 10. For a path P ≡ R1 − · · · − Rn and a relationship type R with rn :
Rn ∈ comp(R) together with path cardinality constraints card(P, R1) ≤ (1, 1) ≤
card(P, Rn) replace R such that comp(Rnew) = comp(R)−{rn : Rn} ∪ {r1,new :
R1} with a new role r1,new holds.

Rule 11. For a path P ≡ R1 − · · · − Rn with A ∈ attr(Rn) and path cardi-
nality constraints card(P, R1) ≤ (1, 1) ≤ card(P, Rn) replace R1, Rn such that
attr(R1,new) = attr(R1) ∪ {A} and attr(Rn,new) = attr(Rn)− {A} hold.

Schema Extension. The third group of rules deal with the schema exten-
sions. This either concerns new attributes, new subtypes or the simplification of
hierarchies. These rules are needed in step 1 of our method.

Rule 12. Add a new attribute A to the type R, i.e. attr(Rnew) = attr(R)∪{A}.
In addition, the new attribute may be used to extend the key, i.e. we may have
key(Rnew) = key(R) ∪ {A}.

230 H. Ma et al.

If the new attribute A introduced by rule 12 does not become a key attribute,
we obtain a dominating schema.

The next two rules allow to introduce a new subtype via selection or projec-
tion on non-key-attributes. In both cases we have schema equivalence.

Rule 13. For a type R introduce a new relationship type R′
new with comp

(R′
new) = {r : R} = key(R′

new) and add a constraint R′
new = σϕ(R) for some

selection formula ϕ.

Rule 14. For a type R and attributes A1, . . . , An ∈ attr(R) such that there
are no Bi ∈ key(R) with Ai ≥ Bi introduce a new relationship type R′

new with
comp(R′

new) = {r : R} = key(R′
new) and attr(R′

new) = {A1, . . . , An}, and add a
constraint R′

new = πA1,...,An(R).

The last rule 15 in this group allows to simplify hierarchies. Here again we
must exploit Hext to obtain dominance.

Rule 15. Replace types R, R1, . . . , Rn with comp(Ri) = {ri : R} = key(Ri)
and card(R, Ri) = (0, 1) (i = 1, . . . , n) by a new type Rnew with comp(Rnew) =

comp(R), attr(Rnew) = attr(R) ∪
n⋃

i=1

attr(Ri) and key(Rnew) = key(R).

Type Integration. The fourth group of rules deals with the integration of
types in step 4 of our method. Rule 16 considers the equality case, rule 17
considers the containment case, and rule 18 covers the overlap case. Note that
these transformation rules cover the core of the approaches in [13,29,14].

Rule 16. If R1 and R2 are types with key(R1) = key(R2) and we have the
constraint R1[key(R1) ∪ X] = f(R2[key(R2) ∪ Y]) for some X ⊆ comp(R1) ∪
attr(R1), Y ⊆ comp(R2)∪attr(R2) and a bijective mapping f , then replace these
types by Rnew with comp(Rnew) = comp(R1) ∪ (comp(R2) − Y − key(R2)),
attr(Rnew) = attr(R1) ∪ (attr(R2) − Y − key(R2)) ∪ {D} and key(Rnew) =
key(R1) ∪ {D} and an optional new distinguishing attribute D.

Rule 17. If R1 and R2 are types with key(R1) = key(R2) and the constraint
R2[key(R2)∪Y] ⊆ f(R1[key(R1)∪X] holds for some X ⊆ comp(R1)∪attr(R1),
Y ⊆ comp(R2)∪attr(R2) and a bijective mapping f , then replace R1 by R1,new

with comp(R1,new) = comp(R1), attr(Rnew) = attr(R1)∪{D} and key(Rnew) =
key(R1) ∪ {D} and an optional new distinguishing attribute D. Furthermore,
replace R2 by R2,new with comp(R2,new){rnew : R1,new} ∪ comp(R2) − Y −
key(R2), attr(R2,new) = attr(R2) − Y − key(R2) and key(R2,new) = {rnew :
R1,new}.

Rule 18. If R1 and R2 are types with key(R1) = key(R2) such that for X ⊆
comp(R1) ∪ attr(R1), Y ⊆ comp(R2) ∪ attr(R2) and a bijective mapping f the
constraints

View Integration and Cooperation 231

R2[key(R2) ∪ Y] ⊆ f(R1[key(R1) ∪X] ,

R2[key(R2) ∪ Y] ⊇ f(R1[key(R1) ∪X] and
R2[key(R2) ∪ Y] ∩ f(R1[key(R1) ∪X] = ∅

are not satisfied, then replace R1 by R1,new with comp(R1,new){r1,new : Rnew}∪
comp(R1)−X−key(R1), attr(R1,new) = attr(R1)−X−key(R1) and key(R1,new)
= {r1,new : Rnew}, replace R2 by R2,new with comp(R2,new){rnew : R1,new} ∪
comp(R2)−Y −key(R2), attr(R2,new) = attr(R2)−Y −key(R2) and key(R2,new)
= {rnew : R1,new} and introduce a new type Rnew with comp(Rnew) = comp(R1)
∪comp(R2), attr(Rnew) = attr(R1) ∪ attr(R2) ∪ {D} and key(Rnew) = key(R1)
∪{D} and an optional new distinguishing attribute D.

The rules 16-18 could each be split into several rules depending on f being
the identity or not and the necessity to introduce D or not. In all cases we obtain
dominance.

Rule 19 considers the case of a selection condition, in which case schema
equivalence holds.

Rule 19. If R and R′ are types with comp(R′) ∪ attr(R′) = Z ⊆ comp(R) ∪
attr(R) such that the constraint R′ = σϕ(πZ(R)) holds for some selection con-
dition ϕ, then omit R′.

Handling Integrity Constraints. The fifth group of rules to be applied in
step 5 of our method concerns transformations originating from path inclusion
constraints. Rule 20 allows us to change a relationship type. This rule leads to
equivalent schemata. Rule 21 allows to introduce a relationship type and a join
dependency. Finally, rule 22 handles a condition under which a relationship type
may be omitted. Both rules 21 and 22 guarantee dominance.

Rule 20. If there are paths P ≡ R1 − R − R2 and P ′ ≡ R2 − R′ − R3

with comp(R) = {r1 : R1, r2 : R2} and comp(R′) = {r3 : R3, r
′
2 : R2} such

that the constraint P [R2] ⊆ P ′[R2] holds, then replace R in such a way that
comp(Rnew) = {r1 : R1, rnew : R′}, attr(Rnew) = attr(R) and key(Rnew) =
key(R)− {r2 : R2} ∪ {rnew : R′} hold.

Rule 21. If there are paths P ≡ R1 − R − R2 and P ′ ≡ R2 − R′ − R3 with
comp(R) = {r1 : R1, r2 : R2} and comp(R′) = {r3 : R3, r

′
2 : R2} such that

the constraint P [R2] = P ′[R2] holds, then replace R and R′ by Rnew such that
comp(Rnew) = {r1 : R1, r2,new : R2, r3 : R3}, attr(Rnew) = attr(R) ∪ attr(R′)
and key(Rnew) = (key(R) − {r2 : R2}) ∪ (key(R′) − {r′2 : R2}) ∪ {r2,new : R2}
hold. Add the join dependency

Rnew [r1, r2,new] �� Rnew [r2,new, r3] ⊆ Rnew[r1, r2,new, r3].

Rule 22. If there are paths P ≡ R1−R2−· · ·−Rn and P ′ ≡ R1−R−Rn with
comp(R) = {r1 : R1, rn : Rn} such that the constraint P [R1, Rn] = P ′[R1, Rn]
holds, then omit R.

232 H. Ma et al.

The final group of transformation rules 23-26 permits to handle remaining
constraints such as functional dependencies, path functional dependencies, and
join dependencies. All these constraints are described in detail in [30]. The rules
refer to step 6 of our method.

Rule 23 handles vertical decomposition in the presence of a functional de-
pendency. Rule 24 allows to simplify a key in the presence of a path functional
dependency. Rule 25 introduces a new entity type in the presence of a path
functional dependency. Finally, rule 26 replaces a multi-ary relationship type by
binary relationship types in the presence of a join dependency. The four rules
lead to dominating schemata.

Rule 23. If a functional dependency X → A with a generalised subset X
of attr(E) and an attribute A ∈ attr(E) − X holds on an entity type E, but
X → key(E) does not hold, then remove A from attr(E) and add a new entity
type E′

new with attr(E′
new) = X ∪ {A} and key(E′

new) = X .

Rule 24. For a path P ≡ R1 − R − R2 with comp(R) = {r1 : R1, r2 : R2}
such that the path functional dependency X → key(R2) holds for a generalised
subset X of attr(R1) replace key(R) by {r1 : R1}.

Rule 25. For a path P ≡ R1 − · · · −Rn such that the path functional depen-
dency X → A holds for a generalised subset X of attr(R1) and A ∈ attr(Rn)
add a new entity type Enew with attr(Enew) = X ∪ {A} and key(Enew) = X .

Rule 26. If R is an n-ary relationship type with comp(R) = {r1 : R1, . . . , rn :
Rn} and attr(R) = ∅ such that the join dependency R[r1, r2] �� . . . �� R[r1, rn] ⊆
R[r1, . . . , rn] holds, then replace R by n new relationship types R1,new, . . . ,
Rn,new with comp(Ri,new) = {r1 : R1, ri : Ri} = key(Ri,new) and attr
(Ri,new) = ∅.

4.3 View Cooperation

View cooperation [30] provides an alternative to view integration in which the
integrated view is only virtual. That is the constituting views are kept and
exchange functions are designed to provide the same functionality as if the views
were integrated.

Definition 4.2. Let Vi = (SVi , qVi) (i = 1, 2) be views (on the same or different
HERM schemata). V1 cooperates with V2 iff there are subschemata S′

Vi
of SVi

and functions f1 : inst(S′
V1

) → inst(S′
V2

) and f2 : inst(S′
V2

) → inst(S′
V1

), such
that both f1 ◦ f2 and f2 ◦ f1 are the identity function.

Basically, view cooperation expresses that part of view V1, exactly the one
corresponding to the subschema S′

V1
can be expressed by the part of view V2

corresponding to the subschema S′
V2

.
Now, if we want to obtain a cooperation between given views V1 and V2, we

may simply apply our view integration method to them using the same trans-
formation rules. This will result in an integrated view V = (SV , qV). With

View Integration and Cooperation 233

respect to this integrated view both S′
V1

and S′
V2

will be identified with a sub-
schema S′

V . In particular we obtain functions f ′
i : inst(S′

Vi
) → inst(S′

V) and
g′i : inst(S′

V) → inst(S′
Vi

)) (i = 1, 2) with g′i ◦ f ′
i = id and f ′

i ◦ g′i = id. Thus,
f1 = g′2 ◦ f ′

1 and f2 = g′1 ◦ f ′
2 define the view cooperation functions.

4.4 Case Study

In order to demonstrate our approach to view integration and cooperation we
first use a second HERM schema S2, which is given by the HERM diagram
in Figure 3. We may think of this schema being used by a mortgage broker
who deals with mortgages from different banks. In addition, the assessment of
the credibility of a customer may depend on securities owned by supporting
relatives, so we add information about relatives to the schema. We omit the
formal definition for this HERM schema.

Relative Customer

Security_Ob
ject

Available_Security Mortgage

Mortgage_Type

Finance_Transactions

Account

on_account

for_customer

supporter

self

for

object security

who payments

type

begin

end

customer_no

first_name

last_name

date_of_birth

street_address

cityphone

value
type

object

identification

interest

conditions

mortgage_no

amount

disagio

begin end

object

interest_rate

bank_id

account_no

account_name

transaction_no

amount

type

frequency

plus/minus

Fig. 3. HERM diagram for mortgage broker application

Example 4.2. Let us first address the integration of the HERM schemata S1

and S2 from Figures 1 and 3. In these schemata we mainly have to deal with the
homogenisation of types in the two schemata, i.e. with type restructuring, and
with type integration.

First we homogenise Customer appearing in both schemata adding at-
tributes (rule 12) and turning the attributes name and address into tuple at-
tributes with components first name and last name, and city and street address,
respectively – which means to apply rule 1. We obtain the integrated type

234 H. Ma et al.

Customer = (∅, { customer no, name(first name, last name),
address(city, street address), phone, date of birth }, { customer no })
Next we split Finance Transactions in S2 into Income and Obligation

according to the value of the attribute plus/minus. This results from applying
rule 13. Furthermore, we can rename role names and turn the attribute account
for both Income and Obligation into a component on account : Account.

The homogenisation of Mortgage Type in S1 and Loan Type in S2 re-
qires not much more than the renaming of the attribute type to identification.
The homogenisation of Mortgage in both schemata requires first to introduce
in S2 a new type Payment, which takes the components who : Customer and
payments : Account from Mortgage, and add a component for : Mortgage.
Similarly, we can split Security in S1 into Available Security, for which we
can drop the component for : Mortgage, and Security. In S1 we can rename
Owes to Payment and add a component payments: Account. Finally, we
replace Mortgage in Payment by the cluster Loan.

The HERM diagram of the final resulting schema is shown in Figure 4.

The work in [16] contains further examples for schema integration.
The integration of schemata turns each view over one of the source schemata

into a view over the integrated schema. What is changed is the defining query.

Example 4.3. Consider the view V1 from Example 4.1. If schema S1 is integrated
with schema S2 into schema S12 in Figure 4, the defining query for V1 changes
as follows:

C(ic, c, n, b, O, L) ←Customer(ic, (c, n, a, b, ph));

L̂(“mortgage”, a, c) ←Mortgage(im, (ilt, m, a, d, p, b, e, o)),
Loan(il, (mortgage : im)),
Payment(ip, (ia, il, ic),
C(ic, cc, nc, bc, O, L).

L̂(“personal”, a, c) ←Personal Loan(ipl, (ilt, l, a, p, b, e, t)),
Loan(il, (personal : ipl)),
Payment(ip, (ia, il, ic),
C(ic, cc, nc, bc, O, L).

Ô(“income”, a, f) ←C(ic, cc, nc, bc, O, L),
Income(ii, (ic, ia, t, t′, a, f)).

Ô(“obligation”, a, f) ←C(ic, cc, nc, bc, O, L),
Obligation(ii, (ic, ia, t, t′, a, f));

Customer Cr(i, (c, n, b, Ô, L̂)) ←C(ic, c, n, b, O, L).

Example 4.4. Let us now address the integration of views. For this consider
another view V2 defined on the database schema S2. Let the target schema SV2

consist again of a single entity-type

View Integration and Cooperation 235

Customer Cr=(∅, {customer no, name(first name,last name), date of birth,
inc oblig{(type, amount, frequency)},
securities{(type, object, value, self)}},

{customer no})

Relative Customer

Security_Ob
ject

Available_Security Mortgage

Loan_Type

Obligation

Account

on_account

for_customer

supporter

self

for

object type

begin

end

customer_no

name(first_name,last_name)

phone

date_of_birth

address(city,street)

value

type object

identification

interest

conditions

mortgage_no

amount

disagio

begin

end

object

interest_rate

bank_id

account_no

account_name

transaction_no

type

frequency

Security

for

object

amount

balance

Income

for_customer

transaction_no

type

frequency

amount

on_account

Personal_
Loan

type

loan_no

amount

begin
end

terms_of_payment

interest_rate

Payment

Loan

who

for

from
Account_Record

a

record_no

type

date

amount

Fig. 4. HERM diagram for integrated HERM schemata

Analogous to Example 4.1 we want to obtain the set of all customers with
their customer number, name and date of birth, plus their set of incomes and obli-
gations (each described by their type, amount and frequency of payment), plus
their set of securities (each described by their type, object, value and whether
it is a security owned by the customer or a supporting relative). The defining
query will be built analogously to the one in Example 4.1 – we omit the details.
We also omit how this defining query will be translated into a query on the
integrated schema S12.

Then we basically integrate the target schemata of V1 and V2, which results
in a schema SV12 with a single entity-type

Customer Cr=(∅, {customer no, name(first name,last name), date of birth,
inc oblig{(type, amount, frequency)},
securities{(type, object, value, self)},

236 H. Ma et al.

loans{(type, amount, account balance)}},
{customer no})

The defining query on S12 is built analogously to the ones for V1 and V2.
We just obtain a third set-valued attribute that has to be constructed by some
fixed-point computation.

Let us finally look at view cooperation, i.e. we do not integrate the views V1

and V2 on schema S12, but only determine view cooperation functions.

Example 4.5. The target schemata of the views V1 and V2 from Examples 4.1
and 4.4 share an equivalent subschema. Both S′

V1
and S′

V2
consist of a single

entity-type

Customer Cr = (∅, {customer no, name, date of birth,
inc oblig{(type, amount, frequency)}},

{customer no})

The only difference is that in V1 the attribute name is a simple attribute,
while in V2 it is a tuple attribute name(first name, last name). The corresponding
equivalent subschema of SV12 also contains this tuple attribute. Therefore, the
cooperation functions f1 : inst(S′

V1
) → inst(S′

V2
) and f2 : inst(S′

V2
) → inst(S′

V1
)

only affect the name attribute. That is, f2 will concatenate the first name and
the last name, while f1 will decompose name according to some algorithm. For
instance, if we assume that spaces are not allowed inside last names, we could
simply search for the last space in a name string and take the substring preceding
it for first name, and the string following the space for last name.

5 View Integration in Data Warehouses

In this section we apply our view integration method to data warehouses. For
this we exploit the general idea of data warehouses, i.e. the separation of input
from operational databases and output to data marts. This idea is illustrated
using a three-tier architecture in Figure 5. In particular, we take up the idea
from [17] to model OLAP applications by dialogue types [21].

The underlying idea is simply that the content presented to a user can be
described by a value of a complex data type. In addition a user is offered op-
erations – the OLAP operations in the case of data warehouses – that work on
the presented value. This defines a dialogue object, and dialogue types arise from
the usual abstraction. In addition, the values presented to the users depend on
some database, so the dialogue types give rise to views that are extended by op-
erations. We briefly illustrate these concepts, then extend our view integration
method to this case.

The fact that view integration arises within the area of data warehousing
arises from using the dialogue types approach to model the data marts for the
OLAP applications. In developing an OLAP application we would first collect

View Integration and Cooperation 237

the user needs including ways how to work with a system – see [21] for more
details. This gives a collection of views, while the warehouse itself is the result
of integrating these views. The problems of deciding on materialised views that
support the data marts efficiently and chosing view cooperation as an alternative
are orthogonal to this integration problem.

5.1 Data Warehouse Architecture

On the bottom tier we have operational databases set up for purposes that are of
no particular interest for the data warehouse. However, we assume that the data
stored in the data warehouse is extracted from these operational databases. In
other words, the input of data into the data warehouse is defined by update- or
refresh operations, which take data from these operational databases and insert
them into the data warehouse. In particular, these refresh-operations can be for-
mulated by queries on the operational databases. Assuming that the HERM has
been used for the operational databases, we can express the refresh-operations
in (extended) HERM algebra or calculus. It is not very likely that the structure
of a data warehouse will require more complicated (computable) queries.

In general, if there is some conflict between these operational data, i.e. data
from different operational databases has to be integrated before it can be inserted
into the data warehouse, we need an integrator component [36]. However, we may
assume that this integrator is part of the extraction functions.

Data Warehouse

Data Mart 1 Data Mart n

Database 1 Database k

Fig. 5. General Data Warehouse Architecture

238 H. Ma et al.

The second tier of the architecture in Figure 5 is made up by the data ware-
house itself. In principle, we just have a database system here with the only
differences that we may assume a simpler schema, i.e. star or snowflake schema,
and we do not have to consider complex transactions. The only write-operations
are the refresh operations that connect the data warehouse to the operational
databases. All other operations only read data from the data warehouse. In fact,
we just build views for the “data marts” or dialogue objects that are used as
the OLAP interface. So, the view construction operations are the only ones that
link the middle tier to the top tier, which deals with OLAP. So again, the major
functionality is expressed by views.

The top tier itself is constructed out of the dialogue objects and the OLAP
operations working on them. This tier realises the idea of using dialogue objects
for this purpose. The general idea from [21] is that each user has a collection
of open dialogue objects, i.e. data marts. At any time we may get new users,
and each user may create new dialogue objects without closing the existing ones.
Thus, we maintain the lists of users and their data marts in the system. Part of
the functionality of the OLAP tier deals with adding and removing users and
data marts. In particular, if a user leaves the system, all data marts owned by
him/her must be removed as well.

The major functionality, however, deals with running operations on existing
data marts or creating new data marts. In the latter case we have to use a view
creation query as described for the middle tier. In this case we choose a new
identifier for this data mart / dialogue object, and initialise its data content. If
the user selects some of the data of the data mart and an operation other than
quit (i.e. the user does not want to leave the system), close (i.e. the user does not
want to finish work on the current data mart) or open (i.e. no new data mart is
to be created), then we request to receive additional input from the user, before
the selected operation will be executed.

5.2 Dialogue Types

We have seen that the major functionality on the OLAP tier is expressed by
views that are extended by operations, which is exactly the idea underlying
dialogue types. However, we simplify the original definition from [21] omitting
the subtle distinction between hidden and visible parts. We also omit hierarchies
of dialogue types.

Definition 5.1. A dialogue type D over a HERM schema (S, Σ) consists of a
view VD = (SD, qD), in which SD consists of a single entity type E, and a set
O of dialogue operations. Each dialogue operation (d-operation for short) in O
consists of

– an operation name op,
– a list of input parameters i1 : D1, . . . , ik : Dk with domain names Di,
– an (optional) output domain Dout,
– a subattribute sel of the representing attribute XE , and

View Integration and Cooperation 239

– a d-operation body, which is built from usual programming constructs op-
erating on instances over (S, Σ) and constructs for creating and deleting
dialogue objects.

Whenever we are given an instance db over (S, Σ), the defining query qD

produces an instance over SD, i.e. a set of pairs (i, v) with i ∈ ID and v ∈
dom(XE), each of which will be called a dialogue object of type D. At any time
only a subset of qD(db) will be available, the set of active dialogue objects. These
represent the active user dialogues in an abstract way.

The presented value v may be projected to πXE

sel (v), which represents the data
that must be selected by the user as a prerequisite for executing operation op.
Once these data are selected and the operation op is started, further input for
the parameters i1, . . . , ik will be requested from the user – using e.g. so-called
dialogue boxes [21] – and the execution of op will update the database db and
result in a new set of active dialogue objects.

5.3 Transformation Rules for Dialogue Types

As user dialogues are an invaluable source of information in requirements engi-
neering, we may usually assume that we know about dialogue objects before the
defining queries and the underlying database schema is fixed. Therefore, view
integration is an unavoidable design task. Integrating the views that underly
the dialogue types leads to a design of the data warehouse. In addition, we will
always be confronted with the desire to rearrange the “data marts”, i.e. the di-
alogue types that define the OLAP functionality. This problem also appears in
database applications other than OLAP.

Therefore, the additional problem is to adapt the d-operations that are used
for the functionality presented to a database or data warehouse user. For this
we define further transformation rules. However, these additional transformation
rules have to be understood as follow-on rules for the case that one of the rules 1-
26 is not just applied to schemata or views, but to dialogue types. Thus, we obtain
additional changes to the selection attribute sel and the body of d-operations.

Rule 27. In case rule 1 is applied to a dialogue type, whenever X(A′
1, . . . , A

′
k)

(k ≤ m) appears in sel or in the body of a d-operation, replace it by A′
1, . . . , A

′
k.

Rule 28. In case rule 2 is applied to a dialogue type, whenever r appears in
sel or in the body of a d-operation, replace it by r

(r)
1 , . . . , r

(r)
n .

We may ignore rules 3 and 4, as clusters have not been allowed in dialogue
types. There is also nothing to add for rule 5, as this introduces a new type, so
operations have to be defined for that type.

Rule 29. In case rule 6 is applied to a dialogue type omit A in sel or in the
body of a d-operation, whenever it appears.

Rule 30. In case rule 6 is applied to a dialogue type omit r1, . . . , rn in sel or
in the body of a d-operation, whenever it appears.

240 H. Ma et al.

These extensions capture the first group of rules dealing with schema re-
structuring. For the second group of rules dealing with the shifting of attributes
we obtain the following extension rules in case the rules are applied to dialogue
types.

Rule 31. In case rule 8 is applied to a dialogue type omit Ai in sel and the
body of operations associated with Ri,new, whenever it appears in sel or the
body of an operation associated with Ri.

Rule 32. In case rule 9 is applied to a dialogue type omit Ai in sel and the
body of operations associated with Rnew , whenever it appears in sel or the body
of an operation associated with R.

Note that the last two extension rules have no effect on Rnew or Ri,new, as
the extension of the selection attribute or the body of an operation has to be
defined for these new types.

Rule 33. In case rule 10 is applied to a dialogue type replace rn by r1,new in
sel and the body of operations associated with Rnew.

Rule 34. In case rule 11 is applied to a dialogue type omit A in sel and the
body of operations associated with Rn,new.

For the third group of rules, i.e. rules 12-15 dealing with schema extension we
cannot define reasonable extension rules for dialogue types, as we always have to
deal with completely new types. The same applies to rules 16-19, i.e. the group
of rules dealing with type integration.

Finally, for the group of rules dealing with integrity constraints only rules
20, 21 and 23 give rise to the following three extension rules for dialogue types.

Rule 35. In case rule 20 is applied to a dialogue type replace r2 by rnew in sel
and the body of operations, whenever it appears.

Rule 36. In case rule 21 is applied to a dialogue type replace r2 by r2,new in
sel and the body of operations, whenever it appears.

Rule 37. In case rule 23 is applied to a dialogue type remove A in sel and the
body of operations, whenever it appears.

5.4 Case Study

Let us continue the case study from the previous section. What we have to do
is to study how operations associated with a view will be affected by the view
integration process.

Example 5.1. Consider the view V1 on schema S1 from Example 4.1. Let us
associate a d-operation show security with this view turning it into a dialogue
type. The idea behind this operation is that a user who gets a presentation of a
customer together with his/her obligations and loans, checks the securities for a
mortgage in the list. So the user will select one of the loans, a mortgage, then
choose the operation show security, and receive a presentation of a security list,
i.e. a new dialogue object will be opened. That is, the d-operation is defined as

View Integration and Cooperation 241

show security[mortgage no]() = d-open (Security List[mortgage no])

This is a very simple d-operation, which only opens a d-object that is specified
by another dialogue type Security List and the value for the key attribute
mortgage no. We omit the definition of this dialogue type.

The integration of schemata S1 and S2 and the integration of views V1 and V2

has only a marginal effect on this d-operation, which becomes a d-operation for
the integrated view. As we only open a d-object, the change is already reflected
in adapting the defining query for the underlying view of the dialogue type
Security List.

Let us consider another d-operation loan update with selection attribute sel
= loan no, i.e. we request again that a loan, this time a personal loan, be selected
from the list of loans of a customer. For this operation we also request additional
input from a user, which is specified by the parameters amount and interest, both
with domain Decimal , and terms with domain String. So we may specify

loan update[loan no](amount:Decimal ,interest:Decimal ,terms:String) =
let (i, (t′, l, a, p, b, e, t)) = Ix ∈ Personal Loan.

x.loan no = loan no
in Personal Loan :& (i, (t′, l, amount, interest, b, e, terms))

That is, we select the data about the loan with the selected loan number
from the database, which is expressed by “the unique x . . . ”, written as Ix ∈
Personal Loan. . . . , then update (: &) this tuple in the database using the
input provided by the user, i.e. the values of the parameters amount, interest
and terms.

In adapting this d-operation to the integrated view, we have to replace the
specification of values in Personal Loan according to the changes to the inte-
grated schema.

6 View Integration in Web Information Systems

A web information system (WIS) is a database-backed information system that
is realized and distributed over the web with user access via web browsers. In-
formation is made available via pages including a navigation structure between
them and to sites outside the system. Furthermore, there should also be opera-
tions to retrieve data from the system or to update the underlying database(s).

The methodology for WIS design in [22,25] emphasises abstraction layers and
the co-design of structure, operations and interfaces. As WISs are open systems
in the sense that everyone who has access to the web may turn up as a user, their
design requires a clear picture of the intended users and their behaviour. This
includes knowledge about the used access channels and end-devices. At a high
level of abstraction this first leads to storyboarding, an activity that addresses
the design of underlying application stories. Storyboarding first describes a story
space by scenes and actions on these scenes. Furthermore, it describes the actors
in these scenes, i.e. groups of users of the WIS. Actor modelling leads to roles,

242 H. Ma et al.

profiles, goals, preferences, obligations and rights. Finally, the actors are linked
to the story space by means of tasks.

Further on in the development process the scenes in the story space have to
be adequately supported. For this the methodology focuses on media types, which
cover extended views, adaptivity and hierarchies. In a nutshell, a media type is an
extended view on some underlying database schema. These views are built in a
way that they capture the complex content and navigation structure that is to be
presented to a user. In order to capture the navigation structure we use abstract
identifiers in the views, both for having a unique handle for each object in the
reult and for being able to reference this object. So the defining queries must be
powerful enough to create these identifiers. As a consequence, views are no longer
independent from each other in the sense that creating one view may require to
create another one simultaneously. This is a well known problem from querying
object oriented databases, for which the solution by IQL [1] can be adopted. An
alternative would be to use the extended query algebra from [25].

The view integration (or cooperation) problem for WISs arises in the same
way as the one for data warehouses. Storyboarding results among others in a
collection of elementary scenes, each of which has to be supported by a media
type, i.e. an extended view. Defining these views gives a collection of views, while
the actual database support requires the integration of these views.

Adaptivity to users, channels and end-devices mainly concerns the question,
whether all information or only the most important part of it is to be presented
to a user. By specifying on a conceptual level what these “most important”
parts are and which parts have to be kept together we may then leave the
technical realisation of adaptivity to an algorithmic solution. Hierarchies enable
the presentation of information at different levels of granularity allowing a user
to switch between these levels. Such hierarchies are common in OLAP systems
and the principles can be borrowed from there. We will not deal with hierarchies
in this article.

Similar to OLAP systems it is likely that the content that is to be made
available to users is modelled, before an underlying database schema and thus
defining queries for media types have been defined. This leads unavoidably to a
view integration problem. In addition, we have to cope with the implications for
operations and for adaptivity – postponing the hierarchies to later. Operations
can be dealt with in the same way as for data warehouses and OLAP systems.

The transformation rules in Section 4 already capture the core of the in-
tegration process, the integration of the views. So we only have to look at the
extensions that arise from media types. Operations have already been dealt with
in Section 5, so we are left with the adaptivity, i.e. we just explain in this section
how the rules have to be extended to be applicable to media types. Thus, we
may concentrate on the aspect of adaptivity.

6.1 Extended Views for Web Information Systems

At the core of a media type we have the same idea as for dialogue types with some
subtle distinctions. The idea is the same as for the dialogue types: The content

View Integration and Cooperation 243

of a web page can be described by a complex value of some type, which may
contain references to other values. These references abstract from links between
pages. Then abstract to types and add operations. This leads first to the notion
of interaction type as defined (in a simplified form) next.

Definition 6.1. An interaction type I over a HERM schema (S, Σ) consists of
a view VI = (SI , qI), and a set O of dialogue operations.

The difference between interaction and dialogue types is that the view schema
SI of an interaction type may be much more complicated. In particular, we
permit references (or roles) between the interaction objects of any type in SI

that result from applying the defining query qI to an instance over (S, Σ). This
usually requires qI to be written in a highly expressive query language. As already
indicated above, we require languages that create abstract identifiers. It is known
from [1] that this identifier creation may involve computing a fixed point, which
is more expressive than what we would use in simpler SQL-like query languages.

Furthermore, for each interaction object (i, v) in qI(db) we interpret the ab-
stract identifier i as a surrogate for a URL address. In this way the queries used
in interaction types already define the navigation structure of the WIS. This is
a fundamental difference to work by others as e.g. in [4], where views are only
used to extract data, whereas the navigation structure is added later on in a
separate design step.

Apart from these subtle differences media types extend interaction types by
cohesion in order to enable adaptivity. Cohesion introduces a controlled form of
information loss exploiting the partial order ≥ on nested attributes.

Definition 6.2. If XM is the representing attribute of an interaction type M
and sub(XM) is the set of all nested attributes Y with XM ≥ Y , then a preorder
'M on sub(XM) extending the order ≥ is called a cohesion preorder .

Large elements in sub(XM) with respect to 'M define information to be kept
together, if possible. Clearly, XM is maximal with respect to 'M . This enables
a controlled form of information decomposition [25]. So we obtain the following
(simplified) definition of a media type.

Definition 6.3. A media type is an interaction type M together with an cohe-
sion preorder 'M .

As media types are extended views over some database schema, any instance
of such a schema defines a set of objects for the media types, which we call media
objects. The difference between these media objects and the interaction objects
that we considered first is that the existence hierarchies leads to different ver-
sion of these objects, while adaptivity replaces a single object by an interlinked
sequence of objects, i.e. the information is fragmented. Nevertheless, these ver-
sions and sequences are determined by the media type, and for our purpose of
integrating these types we do not have to look at the objects at all.

[25] contains an algorithmic approach to adaptivity based on cohesion pre-
orders. This algorithm is not relevant for our purposes here. In that article also
alternatives to cohesion preorders, which consist of proximity values, but lead
to the same results, are discussed.

244 H. Ma et al.

6.2 Transformation Rules for Media Types

The addition of cohesion preorders requires further extensions to our view inte-
gration methodology. We now need additional transformation rules dealing with
the impact of the view integration on the cohesion. We may dispense with dis-
cussing operations as these have already been captured by the rules for dialogue
types. So the following rules are either extension rules to the basic transformation
rules 1-26 or to the rules 27-37 for dialogue types.

Rule 38. In case rules 1 and 27 are applied to a media type, if X(A′
1, . . . , A

′
k)

(k ≤ m) appears in Y ∈ sub(XM), replace it by A′
1, . . . , A

′
k.

Rule 39. In case rules 2 and 28 are applied to a media type, whenever r appears
in Y ∈ sub(XM), replace it by r

(r)
1 , . . . , r

(r)
n .

Same as for dialogue types we may ignore rules 3, 4 and 5 for media types.

Rule 40. In case rules 6 and 29 are applied to a media type omit A in Y ∈
sub(XM), whenever it appears.

Rule 41. In case rules 7 and 30 are applied to a dialogue type omit r1, . . . , rn

in Y ∈ sub(XM), whenever it appears.

These extensions capture the first group of rules dealing with schema restruc-
turing. For the second group of rules dealing with the shifting of attributes we
obtain the following extension rules in case the rules are applied to media types.

Rule 42. In case rules 8 and 31 are applied to a media type omit Ai in Y ∈
sub(XM) associated with Ri,new , whenever it appears..

Rule 43. In case rules 9 and 32 are applied to a media type omit Ai in Y ∈
sub(XM) associated with Rnew, whenever it appears..

As for dialogue types the last two extension rules have no effect on Rnew or
Ri,new, as the extension of the cohesion preorder has to be defined for these new
types.

Rule 44. In case rules 10 and 33 are applied to a media type replace rn by
r1,new in Y ∈ sub(XM) associated with Rnew .

Rule 45. In case rules 11 and 34 are applied to a dialogue type omit A in
Y ∈ sub(XM) associated with Rn,new.

For the third group of rules, i.e. rules 12-15 dealing with schema extension
only rules 12 and 15 give rise to reasonable extension rules for media types. This
defines the following two extension rules.

Rule 46. In case rule 12 is applied to a media type, add A to all Y ∈ sub(XM)
associated with Rnew and extend the now incomplete cohesion preorder.

View Integration and Cooperation 245

Rule 47. In case rule 15 is applied to a media type, define the Cartesian prod-
uct of the cohesion preorders and extend the resulting flawed cohesion preorder.

For the group of rules dealing with type integration, i.e. rules 16-19, no
reasonable extension rules for media types can be defined, as we deal with new
types. Finally, for the group of rules dealing with integrity constraints again only
rules 20, 21 and 23 give rise to the following three extension rules for dialogue
types.

Rule 48. In case rules 20 and 35 are applied to a media type replace r2 by
rnew in Y ∈ sub(XM), whenever it appears.

Rule 49. In case rules 21 and 36 are applied to a media type replace r2 by
r2,new in Y ∈ sub(XM), whenever it appears.

Rule 50. In case rules 23 and 37 are applied to a media type remove A in
Y ∈ sub(XM), whenever it appears.

6.3 Case Study

Let us continue the case study from the previous sections. What we have to do
is to study how a cohesion preorder associated with a view will be affected by
the view integration process.

Example 6.1. Consider the view V1 on schema S1 from Example 4.1. The
representing attribute of the type Customer Cr is a tuple attribute with
five components, two of which are set attributes. As a shortcut we may write
(C, N, D, O{(T1, A1, F)}, L{(T2, A2, B)}) for this attribute.

Here C represents customer no, N the name, D the date of birth, and O and
L the income-obligations and loans, respectively. If this is used as the basis of a
media type M , it is easy to calculate that there are 648 attributes in sub(XM).
As this is a bit too big for our purposes here, let us concentrate only on one com-
ponent, say on the attribute O{(T1, A1, F)}, for which T1, A1 and F represent
the attributes type, amount and frequency, respectively.

The corresponding lattice is shown in Figure 6. Thus, we may define the
following cohesion preorder:

O{(T1, A1, F)} ' O{(T1, A1)} ' O{(T1, F)} ' O{(T1)} ' O{(A1, F)}
' O{(A1)} '(O{(F)} ' O{()} ' ()

If we now remove the attribute F , this preorder reduces to

O{(T1, A1)} ' O{(T1)} ' O{(A1)} '' O{()} ' ()

246 H. Ma et al.

.
O{(T1, A1, F)}

O{(T1, A1)} O{(T1, F)} O{(A1, F)}

O{(T1)} O{(A1)} O{(F)}

O{()}

()

Fig. 6. Cohesion lattice

7 Conclusion

In this article we revisited schema and view integration and cooperation. We
presented a method for schema (or view) integration following the framework in
[16], i.e. we first “clean” given schemata by removing name conflicts, synonyms
and homonyms, then we add inter-schema constraints, and to this schema we
then apply formal equivalence transformation or augmentation rules. The trans-
formation and augmentation rules are correct in the sense that they will always
result in a new schema / view that is equivalent to the original one or dominates
it. For this we introduced a new concept of schema equivalence and dominance
based on computable queries.

This new notion of equivalence and dominance subsumes all reasonable exist-
ing ones, so we do not lose valuable transformation rules. On the other hand it is
rather general, so that the set of transformation rules can be extended if needed
without violating schema equivalence. It is an open problem to characterise ex-
actly, which integration problems would require which notion of dominance and
equivalence. The work in this article did not aim at solving this interesting the-
oretical problem. We concentrated instead on finding a reasonable approach to
view integration and cooperation that is theoretically founded, but pragmatically
oriented.

In follow-on steps we applied the view integration and cooperation framework
to databases, data warehouses and web information systems. In the first two cases
the key concept is that of a dialogue type, which is a view extended by operations.
In the last case the key concept is that of a media type, which further extends
dialogue types by cohesion in order to facilitate adaptivity. In all three cases the
integration of the extended views requested additions to the transformation and
augmentation rules.

View Integration and Cooperation 247

The extension of view integration and cooperation to data warehouses and
web information systems is completely new. So far, the relevant work in the liter-
ature concentrated exclusively on the structural aspect, leaving the implications
to view extensions aside. As the extensions to the views are the core contribu-
tion of dialogue types (for the case of data warehouses) and media types (for
web information systems), respectively, it is important to have a pragmatic view
integration and cooperation method at hand. Without such a method the devel-
opment methodology would be incomplete.

Thus, the presented approach to view integration and cooperation turns out
to be general enough to be applicable to a large class of data-intensive informa-
tion systems. By means of the areas for which we demonstrated this applicability,
it contributes to a decisive aspect in systems development. We demonstrated this
applicability by a case study for all three areas. However, the integration of view
integration / cooperation into an overall framework for systems development has
been left out of this article. For dialogue-oriented enterprise information systems
we refer to [21], and for WISs to [25].

On a more theoretical basis the new concept of schema dominance and equiv-
alence can be the subject of a deeper investigation. In particular, it opens the
possibility to develop even more powerful transformation and augmentation rules
and to investigate the implications on complexity. Such problems are left for fu-
ture research.

References

1. Abiteboul, S., and Kanellakis, P. C. Object identity as a query language
primitive. In Proceedings SIGMOD 1989 (1989), pp. 159–173.

2. Atzeni, P., Gupta, A., and Sarawagi, S. Design and maintenance of data-
intensive web-sites. In Proceeding EDBT’98, vol. 1377 of LNCS. Springer-Verlag,
Berlin, 1998, pp. 436–450.

3. Biskup, J., and Convent, B. A formal view integration method. In Proceedings
of the 1986 ACM SIGMOD International Conference on Management of Data.
Association for Computing Machinery, 1986, pp. 398–407.

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Mat-
era, M. Designing Data-Intensive Web Applications. Morgan Kaufmann, San
Francisco, 2003.

5. Chandra, A., and Harel, D. Computable queries for relational data bases.
Journal of Computer and System Sciences 21 (1980).

6. Feyer, T., Kao, O., Schewe, K.-D., and Thalheim, B. Design of data-intensive
web-based information services. In Proceedings of the 1st International Conference
on Web Information Systems Engineering (WISE 2000), Q. Li, Z. M. Ozsuyoglu,
R. Wagner, Y. Kambayashi, and Y. Zhang, Eds. IEEE Computer Society, 2000,
pp. 462–467.

7. Feyer, T., Schewe, K.-D., and Thalheim, B. Conceptual modelling and de-
velopment of information services. In Conceptual Modeling – ER’98, T. Ling and
S. Ram, Eds., vol. 1507 of LNCS. Springer-Verlag, Berlin, 1998, pp. 7–20.

8. Garzotto, F., Paolini, P., and Schwabe, D. HDM - a model-based approach
to hypertext application design. ACM ToIS 11, 1 (1993), 1–26.

248 H. Ma et al.

9. Hull, R. Relative information capacity of simple relational database schemata.
SIAM Journal of Computing 15, 3 (1986), 856–886.

10. Hull, R., and Yap, C. K. The FORMAT model: A theory of database organisa-
tion. Journal of the ACM 31, 3 (1984), 518–537.

11. Inmon, W. Building the Data Warehouse. Wiley & Sons, New York, 1996.
12. Kedad, Z., and Métais, E. Dealing with semantic heterogeneity during data in-

tegration. In Conceptual Modeling – ER’99 (1999), J. Akoka, M. Bouzeghoub,
I. Comyn-Wattiau, and E. Métais, Eds., vol. 1728 of LNCS, Springer-Verlag,
pp. 325–339.

13. Koh, J., and Chen, A. Integration of heterogeneous object schemas. In Entity-
Relationship Approach - ER’93, R. Elmasri, V. Kouramajian, and B. Thalheim,
Eds., vol. 823 of LNCS. Springer-Verlag, 1994, pp. 297–314.

14. Larson, J., Navathe, S. B., and Elmasri, R. A theory of attribute equiva-
lence in databases with application to schema integration. IEEE Transactions on
Software Engineering 15, 4 (1989), 449–463.

15. Lehmann, T. Ein pragmatisches Vorgehenskonzept zur Integration und Koopera-
tion von Informationssystemen. PhD thesis, TU Clausthal, 1999.

16. Lehmann, T., and Schewe, K.-D. A pragmatic method for the integration
of higher-order Entity-Relationship schemata. In Conceptual Modeling - ER 2000,
A. H. F. Laender, S. W. Liddle, and V. C. Storey, Eds., vol. 1920 of LNCS. Springer-
Verlag, 2000, pp. 37–51.

17. Lewerenz, J., Schewe, K.-D., and Thalheim, B. Modelling data warehouses
and OLAP applications using dialogue objects. In Conceptual Modeling – ER’99
(1999), J. Akoka, M. Bouzeghoub, I. Comyn-Wattiau, and E. Métais, Eds., vol. 1728
of LNCS, Springer-Verlag, pp. 354–368.

18. Ludäscher, B., and Gupta, A. Modeling interactive web sources for information
mediation. In Advances in Conceptual Modeling, P. P.-S. Chen, Ed., vol. 1727 of
LNCS. Springer-Verlag, 1999, pp. 225–238.

19. Qian, X. Correct schema transformations. In Advances in Database Technology
- EDBT’96, P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, Eds., vol. 1057 of
LNCS. Springer-Verlag, 1996, pp. 114–126.

20. Schewe, K.-D. The power of media types. In Web Information Systems Engineer-
ing – WISE 2004, M. Papazoglou, S. Su, and X. Zhou, Eds., vol. 3306 of LNCS.
Springer-Verlag, 2004, pp. 233–238.

21. Schewe, K.-D., and Schewe, B. Integrating database and dialogue design.
Knowledge and Information Systems 2, 1 (2000), 1–32.

22. Schewe, K.-D., and Thalheim, B. Modeling interaction and media objects. In
Natural Language Processing and Information Systems: 5th International Confer-
ence on Applications of Natural Language to Information Systems, NLDB 2000,
M. Bouzeghoub, Z. Kedad, and E. Métais, Eds., vol. 1959 of LNCS. Springer-
Verlag, Berlin, 2001, pp. 313–324.

23. Schewe, K.-D., and Thalheim, B. Reasoning about web information systems
using story algebras. In Advances in Databases and Information Systems – ADBIS
2004, G. Gottlob, A. A. Benczúr, and J. Demetrovics, Eds., vol. 3255 of LNCS.
Springer-Verlag, 2004, pp. 54–66.

24. Schewe, K.-D., and Thalheim, B. Structural media types in the development of
data-intensive web information systems. In Web Information Systems, D. Taniar
and W. Rahayu, Eds. IDEA Group, 2004, pp. 34–70.

25. Schewe, K.-D., and Thalheim, B. Conceptual modelling of web information
systems. Data and Knowledge Engineering 54, 2 (2005), 147–188.

View Integration and Cooperation 249

26. Schewe, K.-D., and Zhao, J. Balancing redundancy and query costs in dis-
tributed data warehouses – an approach based on abstract state machines. In
Conceptual Modelling 2005 – Second Asia-Pacific Conference on Conceptual Mod-
elling (Newcastle, Australia, 2005), S. Hartmann and M. Stumptner, Eds., vol. 43
of CRPIT, Australian Computer Society, pp. 97–105.

27. Schwabe, D., and Rossi, G. An object oriented approach to web-based applica-
tion design. TAPOS 4, 4 (1998), 207–225.

28. Sciore, E., Siegel, M., and Rosenthal, A. Using semantic values to facilitate
interoperability among heterogeneous information systems. ACM TODS 19, 2
(1994), 254–290.

29. Spaccapietra, S., and Parent, C. View integration – a step forward in solving
structural conflicts. IEEE Transactions on Knowledge and Data Engineering 6, 2
(1994), 258–274.

30. Thalheim, B. Entity-Relationship Modeling: Foundations of Database Technology.
Springer-Verlag, 2000.

31. Thalheim, B., and Düsterhöft, A. SiteLang: Conceptual modeling of internet
sites. In Conceptual Modeling – ER 2001, H. S. K. et al., Ed., vol. 2224 of LNCS.
Springer-Verlag, Berlin, 2001, pp. 179–192.

32. Theodoratos, D., and Sellis, T. Data warehouse schema and instance de-
sign. In Conceptual Modeling – ER’98 (1998), vol. 1507 of LNCS, Springer-Verlag,
pp. 363–376.

33. Thomson, E. OLAP Solutions: Building Multidimensional Information Systems.
John Wiley & Sons, 2002.

34. Turull Torres, J. M. On the expressibility and computability of untyped
queries. Annals of Pure and Applied Logic 108, 1-3 (2001), 345–371.

35. Van den Bussche, J. Formal Aspects of Object Identity in Database Manipulation.
PhD thesis, University of Antwerp, 1993.

36. Widom, J. Research problems in data warehousing. In Proceedings of the 4th In-
ternational Conference on Information and Knowledge Management (1995), ACM.

37. Zhao, J., and Ma, H. Quality-assured design of on-line analytical processing
systems using abstract state machines. In Proceedings of the Fourth International
Conference on Quality Software (QSIC 2004) (Braunschweig, Germany, 2004), H.-
D. Ehrich and K.-D. Schewe, Eds., IEEE Computer Society Press.

38. Zhao, J., and Schewe, K.-D. Using abstract state machines for distributed
data warehouse design. In Conceptual Modelling 2004 – First Asia-Pacific Con-
ference on Conceptual Modelling (Dunedin, New Zealand, 2004), S. Hartmann and
J. Roddick, Eds., vol. 31 of CRPIT, Australian Computer Society, pp. 49–58.

Semantic Integration of Tree-Structured Data
Using Dimension Graphs�

Theodore Dalamagas1, Dimitri Theodoratos2, Antonis Koufopoulos1,
and I-Ting Liu2

1 School of Electr. and Comp. Engineering, National Technical University of Athens,
Athens, GR 15773

{dalamag, akoufop}@dblab.ece.ntua.gr
2 Department of Computer Science, New Jersey Institute of Technology,

Newark, NJ 07102
{dth, il2}@cs.njit.edu

Abstract. Nowadays, huge volumes of Web data are organized or ex-
ported in tree-structured form. Popular examples of such structures are
product catalogs of e-market stores, taxonomies of thematic categories,
XML data encodings, etc. Even for a single knowledge domain, name
mismatches, structural differences and structural inconsistencies raise
difficulties when many data sources need to be integrated and queried in
a uniform way. In this paper, we present a method for semantically in-
tegrating tree-structured data. We introduce dimensions which are sets
of semantically related nodes in tree structures. Based on dimensions,
we suggest dimension graphs. Dimension graphs can be automatically
extracted from trees and abstract their structural information. They are
semantically rich constructs that provide query guidance to pose queries,
assist query evaluation and support integration of tree-structured data.
We design a query language to query tree-structured data. The language
allows full, partial or no specification of the structure of the underlying
tree-structured data used to issue queries. Thus, queries in our language
are not restricted by the structure of the trees. We provide necessary
and sufficient conditions for checking query satisfiability and we present
a technique for evaluating satisfiable queries. Finally, we conducted sev-
eral experiments to compare our method for integrating tree-structured
data with one that does not exploit dimension graphs. Our results demon-
strate the superiority of our approach.

1 Introduction

Nowadays, huge volumes of data are posted and retrieved through the Web.
Despite this vast exchange of information, there is no consistent and strict orga-
nization of data, raising difficulties for its sharing and processing. For the Web
to reach its full potential and become a universally accessible platform, it should
� Work supported in part by PYTHAGORAS EPEAEK II programme, EU and Greek

Ministry of Education, co-funded by the European Social Fund (75%) and National
Resources (25%).

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 250–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Semantic Integration of Tree-Structured Data Using Dimension Graphs 251

support effective retrieval and integration of the posted data. Tree structures play
an important role in this task, providing a means to organize the information
on the Web. Taxonomies of thematic categories, concept hierarchies, e-commerce
product catalogs are examples of such structures. The XML language [3] is nowa-
days the standard data exchange format on the Web for tree-structured data.
The recent proliferation of XML-based standards and technologies for managing
data on the Web demonstrates the need for effective and efficient management
of tree-structured data. Even if data is not stored natively in tree structures,
export mechanisms make data publicly available in tree structures to enable its
automatic processing by programs, scripts, and agents on the Web [13].

Querying capabilities on these structures are provided either through brows-
ing tools or through path expression queries. For the former, the user should
navigate among nodes to identify data. For the latter, she should form queries
using some of the query languages proposed in the literature (e.g. XPath [4],
XQuery [5]). For example, /notebooks/new/ultralight[price<2000] is an XPath
expression that will retrieve new, ultralight notebooks that cost less than $2000.

The Problem. Under the information integration perspective [24], a challeng-
ing issue is to integrate and query in a uniform way many tree-structured data
sources. Users should be able to pose a query on a ‘global’ tree structure. The
answer of the query is formed using data retrieved from ‘local’ data sources.
The whole process should be transparent to the user in the sense that she need
not know details about the local data sources and the query processing. Even
for a single knowledge domain, integrating tree-structured data turns out to be
a hard task due to name mismatches, structural differences and structural in-
consistencies. Name mismatches appear because tree structures lack semantic
information. For example, laptop computers might be referred to as notebooks
in one product catalog but as portables in another catalog. In this paper, we
do not focus on this issue and we assume that it is resolved using well-known
schema matching techniques [28]. Structural differences and, far more impor-
tant, structural inconsistencies appear because of the different possible ways
of organizing the same data in tree structures. For example, a structural dif-
ference exists when a category appears in a product catalog but does not ap-
pear in another. A structural inconsistency appears when a product catalog
for notebooks classifies new, SONY notebooks with 10′′ display in the path
/notebooks/new/SONY/10′′, while another catalog classifies the same products
in the path /SONY/notebooks/10′′/new. As a result, a path expression query
in the form of /notebooks/SONY/new/10′′ should be reformulated to match the
structure of each catalog.

Current tree-structured data query languages (e.g. Xquery) handle this issue
in a procedural way, in the sense that the user should explicitly specify structural
differences and irregularities as part of the query itself. For example, to identify
new, SONY notebooks with 10′′ display as in the previous example, the user
should explicitly specify alternate sequences for categories and use disjunctions
in her query. Requiring such a strict specification raises difficulties in forming
queries.

252 T. Dalamagas et al.

A naive approach to cope with structural differences and inconsistencies is
to generate different versions of the initial query, considering different subsets
of nodes involved in its path expressions and their different orderings. Clearly
this is not efficient due to the large number of queries that need to be gener-
ated. Instead of reordering the initial query, relaxing techniques can be used to
change its form and search for answers in local data sources [8,19]. For example,
query /new/monitors/CRT/17′′ can be relaxed to /new/monitors//17′′, where
‘//’ denotes ancestor-descendand relationship. The relaxed query asks for new
17′′ monitors, without specifying whether these monitors are TFT or CRT, and
permits other nodes to appear between nodes monitor and 17′′. Nevertheless,
such techniques return approximate and not exact answers.

A traditional approach to information integration defines mapping rules be-
tween a global structure and the local structures used in the sources [15]. For ex-
ample, given the rules (notebooks/Sony)→ (Sony/notebooks) and (new/10′′)
→ (10′′/new) for one catalog, query /notebooks/Sony/new/10′′ will become
/Sony/notebooks/10′′/new in order to match its structure. Such approaches re-
quire extensive manual effort, since the global schema is difficult to contruct and
the rules should be hard-coded in the integration application.

Our Approach. In this paper, we suggest a novel approach to the integration
of tree-structured data. Tree-structured data provides mainly syntactic and not
semantic information. However, there are inherent semantics, for instance, sub-
categories of a main category in a catalog are usually related under a seman-
tic interpretation given by the author of that particular catalog. Subcategories
notebooks and desktops, for example, indicate that there are certain items
that can be characterized with a property that indicates their product type
(i.e. notebook or desktop). Our approach captures and exploits such a semantic
information for querying tree-structured data (called here value trees). Such a
semantic information plays a two-fold way: (a) it becomes part of a query lan-
guage itself and (b) it provide a means for optimizing queries in tree-structured
data.

We introduce the concept of a dimension that groups together semantically
related values (nodes). For instance, IBM, Sony, HP can be values of dimension
brand. We assume that the semantic interpretation of the values is available.
The nodes of a value tree are partitioned into dimensions. The different dimen-
sions of a value tree are related through precedence relationships incurred by
the parent-child and ancestor-descendant relationships of their nodes. We cap-
ture these precedence relationships between dimensions of a value tree into the
concept of a dimension graph for the value tree. Dimension graphs can be auto-
matically extracted from trees and abstract their structural information. They
are semantically rich constructs that provide query guidance to pose queries,
assist query evaluation and support integration of tree-structured data.

Query conditions involve dimensions, and thus query formulation is not de-
pendent on the structure of value trees. For instance, the query above asking for
new Sony notebooks with 10′′ display would look like: pc type = Notebooks,
brand = Sony, condition = New, display size = 10′′, where pc type, bra-

Semantic Integration of Tree-Structured Data Using Dimension Graphs 253

nd, condition and display size are dimensions. No order is a priori specified
among values (nodes), unless the user wants to impose a partial or a total order.
The system uses the dimension graph of the value tree to identify orderings of
the values that can possibly exist in the value tree. Only these value orderings
will be used to compute the answer of the query on the value tree. This step of
the computation of the query answer is performed before the query evaluation
reaches the value tree which is, in general, much larger than its dimension graph.
Dimension graphs provide also the means for integrating different data sources.
This is achieved through the creation of a ‘global dimension graph’ which is a
merging of the dimension graphs of the data sources. User queries are issued
against the global graph and they are then translated into queries on the local
dimension graphs where they are evaluated.

Contribution. The main contributions of the paper are the following:

• We introduce dimensions to record semantic information for the nodes of
value trees. We also introduce dimension graphs to capture structural infor-
mation on value trees. Given a partitioning of the nodes of value trees into
dimensions, the dimension graphs for these value trees can be automatically
extracted.

• We design a query language for this framework. Queries are not issued di-
rectly on value trees but on their dimensions. Therefore, queries are not
cast on the structure of a specific value tree. The user can optionally specify
parent-child and/or ancestor-descendent relationships between dimensions in
a query.

• We show how queries on value trees can be evaluated. In this process, the
dimension graph of the value tree plays a two-fold role. First, it allows identi-
fying an unsatisfiable query, that is, a query that does not have an answer on
any value tree underlying the dimension graph. Second, if the query is satis-
fiable, it allows determining those orderings of dimensions that can possibly
generate non-empty answers. Thus, dimension graphs prune useless dimen-
sion orderings at an early stage of the evaluation of a query. We provide
necessary and sufficient conditions for a query to be unsatisfiable, and we
show how path expressions to be evaluated on value trees are generated from
non-filtered dimension orderings.

• We present a method for integrating different data sources through the cre-
ation of a global dimension graph. We show how queries on the global di-
mension graph can be evaluated first at the global site and then at the data
sources.

• We carry out several experiments to compare our approach to one that
does not exploit dimension graphs in the integration of tree-structured data
sources. Our results demonstrate the superiority of our approach.

• Our approach can be applied to the integration of tree-structured data in
various application areas including the integration of product catalogs with
different structures in e-commerce applications or the integration of XML
data from similar knowledge domains that conform to different DTDs.

254 T. Dalamagas et al.

Outline. The rest of the paper is organized as follows. The next section dis-
cusses related work. In Section 3, we introduce dimensions and we define dimen-
sion graphs for value trees. Section 4 presents the query language used to pose
queries on dimension graphs. It also shows how queries can be checked for unsat-
isfiability and how they are evaluated on the underlying value trees. In Section
5, we show how data sources can be integrated and queried in a uniform way.
Section 6 presents the experimental evaluation of our approach. Finally, Section
7 concludes the paper and presents further work.

2 Related Work

Tree-structured data integration has become a popular research issue, especially
after the latest increase in the use of XML to encode data. The vast majority of
suggested techniques follow traditional information integration methods. Given
a predefined virtual structure (i.e. a global schema), mapping rules are defined
between the virtual structure and the local structures of the sources. The initial
query is posed on the virtual structure and transformed to queries on local
structures using the mapping rules.

The Xyleme system [15] copes with the problem of integrating XML data
sources by defining and querying views. The user creates a DTD to act as the
global schema. Queries are expressed using query pattern trees. Query evalua-
tion exploits mapping rules in the form of path-to-path correspondences. The
Agora system [25] integrates relational and tree-structured XML data sources
under a global XML schema. Users express a query in the XQuery language over
a given global XML schema. The query is translated to an intermediate SQL
query, and then to SQL queries on local data sources. In [7], a methodology
to integrate XML Web resources is presented. The global schema used to pose
OQL queries is a lightweight ontology with object-oriented model primitives.
Query evaluation is based on mapping rules in the form of path-to-path cor-
respondences. In [14], an XML integration system based on the YAT model is
described. YAT queries on a global schema are translated to an algebraic form
based on a set of algebraic operators. The algebraic translations of the initial
query are further processed using YAT mapping rules before they are evalutated
in the data sources. In [26], an adaptive evaluation technique is presented for
querying XML-based electronic catalogs. Given a global DTD, Xpath queries
are formed and reformulated to queries on the local catalogs. Query evaluation
is based on mapping rules between elements of the global DTD and their rep-
resentation in local catalogs. A language for querying XML sources is presented
in [12]. Queries are issued on a global conceptual schema and translated to lo-
cal data sources using a pre-defined set of mappings. A detailed survey about
general schema integration techniques can be found in [29]. Our approach differs
than the aforementioned traditional information integration techniques in that
it does not require the manual definition of hard-coded mapping rules between
the virtual tree structure and the local structures. Further, our approach does
not use a predefined virtual global schema. In contrast, a global dimension graph
is constructed automatically from local data sources.

Semantic Integration of Tree-Structured Data Using Dimension Graphs 255

Relevant to our work are also integration techniques where a global structure
is not predefined, but rather is constructed using schema descriptions extracted
from local data sources. In [16], global schemas are generated from the semantic
integration of conceptual schemas extracted from DTDs of XML data sources.
Similarly, XClust [23] generates DTDs to act as glocal schemas, applying cluster-
ing methods to detect similar DTDs prior to their integration. Techniques that
extract DTDs from collections of XML documents are also presented in [17]. In
[9], a grammar-based model based on tree automata is used to integrate DTDs.
Contrary to our approach, these papers do not deal with query evaluation.

Schema-based descriptions for data with little or no apparent structure have
also been suggested for semistructured databases [6]. Dataguides are introduced
in [18]. They are structural summaries for semistructured data, useful for for-
mulating queries, storing statistics about paths and nodes, and enabling query
optimization. Statistical synopses for graph-structured XML databases are sug-
gested in [27]. In [11], graph schemas are introduced to formulate, optimize and
decompose queries for semistructured data. Database conformity to a graph
schema is based on notion of graph simulation. These approaches do not provide
a direct solution to the problem of structural inconsistencies and differences in
data sources that we address here. Further, they are purely syntactic. In contrast
to our approach, they do not exploit semantic information.

Integrating tree-structured data is also a popular issue in e-commerce ap-
plications. A system to integrate product classification schemes is presented in
[10]. Using the source descriptions, the system generates a glocal schema based
on inter-schema and intra-schema relationships determined manually. In [22], a
method to integrate e-commerce catalogs is presented. Related categories are
organized in term vectors. Membership rules are defined to encode parent/child
relationship between categories. The integrated catalog contains all information
from the original catalogs, maintaining at the same time their structural informa-
tion. Facet classification hierarchies [1,2] also exploit sets of semantically related
categories. Facets provide different classification schemes for the same data. In
[31], the authors present faceted taxonomies for Web catalogs. They investigate
the problem of invalid navigation paths produced after the combination of tax-
onomies corresponding to different facets. None of these papers suggest query
evaluation techniques. Preliminary work on querying tree-structured data using
dimension graphs has also been presented in [30]. However, this paper does not
consider the problem of integrating tree-structured data sources.

3 Data Model

In this section we present a data model for tree-structured data. We introduce
a type of trees, called value trees, to represent tree-structured data. We also
discuss the notion of a dimension, based on which a partitioning can be enforced
on value trees.

256 T. Dalamagas et al.

pc_category

pc_type

pda_type
brand

mobile_type

accessories

R

Notebooks

Custom Ultralight Multimedia

Desktops

10''

Servers

8''

PDAs

r

Mac HPSony IBMSony

pc_type

pc_category

mobile_type

brand

HP IBM

mobile_type brand

R

Notebooks

New Used Servers

Desktops PDAs

r

Mac HPSony

pc_type mobile_type

brand

HP IBMMac Sony

Dell Sony

Used New Used

condition

condition brand

R

brand

Notebooks Desktops PDAs

r

Mac

Gateway

HP

Mac

Acer

Compaq

Sony

Cases

Pocket PC

Palm

Used

Used

condition

New Used

New UsedNew

condition

Value Tree T1
(a)

Value Tree T2
(b)

Value Tree T3
(c)

Multimedia

HP IBM

brand

conditionpc_category

Fig. 1. Value trees T1, T2 and T3

3.1 Value Trees and Dimensions

We assume a set of values V that includes a special value r. The elements of V
are used to build value trees.

Definition 1. A value tree is a rooted node-labeled tree T , such that:
(a) Each node label in T belongs to V .
(b) Value r labels only the root of T .
(c) There are no sibling nodes in T labeled by the same value. �

Example 1. Figure 1 shows examples of value trees T1, T2 and T3 (for the mo-
ment, the dotted labeled rectangles that group the nodes should be ignored).
These value trees are parts of taxonomies used to categorize products related
to computer equipment. The same value may label multiple nodes in a value
tree. For example, value HP labels two nodes in T2. Notice that there are stuc-
tural differences and inconsistencies between value trees T1, T2 and T3, although
they refer to the same knowledge domain. For example, there are nodes labeled
Multimedia or Servers in T2 and T3, even though no such nodes appear in T1.
Also, a node labeled Used is a child of a node labeled Sony in T2, although the
opposite holds in T3. Note that we assume that naming mismatches have been

Semantic Integration of Tree-Structured Data Using Dimension Graphs 257

resolved. For instance, nodes labeled by the same value in different trees refer to
the same real world concept. �

Values in set V can be grouped to form dimensions. Intuitively, a dimension
is a set of semantically related values. For instance, values Mac, Acer and Compaq
can be interpreted as values of a dimension brand. A semantic interpretation of
values is imposed by a user. A dimension can also be seen as a property with
values.

Definition 2. Let V be a set of values that includes a specific value r. A dimen-
sion set over V is a partition D of V that includes a set R whose single element
is value r. Each element of D is called dimension. �

Example 2. Figure 2 shows a dimension set D and the names of its dimensions.
We use these dimensions and the value trees of Figure 1 as a running example
in this paper. �

A dimension set also partitions the nodes of a value tree. We are interested in
value trees where every path from the root to a leaf involves values from distinct
dimensions. To describe this type of value trees we introduce the concept of tree
conformity with respect to a dimension set.

Definition 3. Let D be a dimension set over a value set V . A value tree T
conforms to D iff there are no two nodes on a path in T labeled by values that
belong to the same dimension in D. �

Example 3. Consider, for example, the value trees T1, T2 and T3 of Figure 1.
Dotted rectangles labeled by dimensions are used to show the partitioning of
nodes into dimensions. The same dimension might label different rectangles in a
value tree. In this case, this dimension comprises the nodes confined by all these
rectangles. Dimension pc type in T1 refers to types of personal computers and
includes nodes labeled by values Desktops and Notebooks. Dimension brand
in T3 refers to brand names and includes nodes labeled Mac, Sony, HP, IBM
and Dell. All trees T1, T2, and T3 conform to the dimension set D shown in
Figure 2. �

Nodes labeled by values of the same dimension need not be in the same level
of a value tree. For example, in T2, the nodes labeled 10’’ and 8’’ of dimension

Dimension Set D = { R, pc_type, brand, mobile_type, pda_type, accessories, pc_category, condition }

Dimensions: pc_type = { Notebooks, Desktops }
brand = { Mac, Sony, HP, IBM, Gateway, Acer, Compaq }
mobile_type = { PDAs, 10'', 8'' }
pda_type = { Palm, Pocket_PC }

accessories = { Cases }
pc_category = { Ultralight, Multimedia, Server }

condition = { New, Used }

Fig. 2. A dimension set and its dimensions

258 T. Dalamagas et al.

mobile type are not in the same level as the node labeled PDAs of the same
dimension. A value of a dimension may not appear in a value tree. For example,
the value Ultralight of dimension pc category does not appear in value tree
T3 nor in T1, although it appears in T2. Further, a dimension may have no value
in a value tree. For instance, no value of pc category appears in T1.

In the following we assume that a dimension set D is given and all value trees
conform to D.

3.2 Dimension Graphs

Values of one dimension can label children or descendants of nodes labeled by
values of any other dimension in a value tree. However, there are cases where val-
ues of one dimension do not label descendants of nodes labeled by values of some
other dimension. For example, none of the values Pocket PC and Palm of dimen-
sion pda type labels a descendant of the nodes labeled by the value Desktops
or Notebooks of dimension pc type in the value tree T1 of Figure 1. To capture
this type of relationship between dimensions in a value tree, we introduce the
concept of a dimension graph. Dimension graphs can be automatically extracted
from value trees and abstract their structural information. Moreover, they pro-
vide semantic query guidance to pose and evaluate queries on value trees (see
subsequent sections). Before we give the formal definition of a dimension graph
with respect to a value tree, we define dimension graphs as general structures.

Definition 4. A dimension graph over dimension set D is a directed graph
whose nodes are dimensions in D. �

A path in a dimension graph is a sequence D1, . . . , Dk of distinct nodes such
that there is a directed edge from Di to Di+1, where 1 ≤ i ≤ k − 1.

Based on the definitions of dimension graphs as general structures, we pro-
ceed to define formally dimension graphs with respect to a value tree.

Definition 5. Let T be a value tree over a dimension set D. A dimension graph
of T is a dimension graph (N, E), where N is a set of nodes and E is a set of
edges defined as follows:
(a) There is a node D in N iff there is a value in T that belongs to dimension

D.
(b) There is a directed edge in E from node Di to node Dj iff there are nodes ni

and nj in T labeled by values vi ∈ Di and vj ∈ Dj, respectively, such that nj

is a child node of ni in T .
If G is a dimension graph of a value tree T , we say that T underlies G. �

Example 4. Consider for example the value trees T1, T2 and T3 of Figure 1.
Figure 3 shows the dimension graphs G1, G2 and G3 of T1, T2 and T3, respectively.
There is an edge from dimension mobile type to dimension pda type in G1, since
a node labeled Palm (a value of pda type) is a child of a node labeled PDAs (a
value of mobile type) in value tree T1. Looking at the lower left part of value tree
T3, we note that a node labeled Mac (a value of brand) is a child of a node labeled

Semantic Integration of Tree-Structured Data Using Dimension Graphs 259

pda_type

mobile_type

accessories

condition

R R

pc_type

mobile_type
pc_category

brand

pc_type

brand

R

pc_type

brand

mobile_type

condition

pc_category

Dimension graph G2

(b)
Dimension graph G3

(c)
Dimension graph G

1

(a)

Fig. 3. Dimension Graphs

New (a value of condition). However, looking at the lower right part of T3, a
node labeled New is a child of a node labeled Sony (another value of dimension
brand). Thus, there is an edge from dimension condition to dimension brand
and an edge from brand to condition in G3 which are compactly shown in the
figures by a double headed edge. �

The dimension graph of a value tree has a particular form. The following
propositions describe some of its properties. Their proof is straightforward.

Proposition 1. There is exactly one node in the dimension graph of a value
tree having only outgoing edges. �

This unique node is called root of the dimension graph. Dimension graphs
can have cycles. For instance, in Figure 3(c), dimension graph G3 has two cy-
cles: pc category, brand, condition, pc category and condition, brand,
condition.

Proposition 2. For every node of a dimension graph, there is a path from the
root to that node. �

The next proposition relates paths from the root in a value tree to paths
from the root in its dimension graph.

Proposition 3. Consider a dimension graph G of a value tree T over a dimen-
sion set D. Let v1, . . . , vk be values from the distinct dimensions D1, . . . , Dk ∈
D, respectively. If v1, . . . , vk label, in that order, nodes on a path in T , then
D1, . . . , Dk appear in that order on a path from the root in G. �

4 Queries

We present in this section a simple query language and we outline how queries can
be evaluated. Our intension is not to provide a full-fledged language. For instance,
it does not include selection predicates. Our goal is to show how dimensions can

260 T. Dalamagas et al.

be used to query value trees. Queries in this language are defined on dimension
graphs. Roughly speaking, a user poses a query by annotating some dimensions in
a dimension graph with permissible sets of values. The answer comprises root-to-
leaf paths on the underlying value tree that involve one value from each of these
value sets. An interesting feature of the language is that the user has the choice
of not specifying or partially specifying parent-child and ancestor-descendant
relationships between the annotated dimensions in a query. The system can
identify possible orderings of dimensions in the paths of the answer based on
the dimension graph only. These orderings are used as patterns for constructing
the path expressions that compute the answer of the query on the underlying
value tree. All the other orderings of dimensions are excluded from consideration
before the computation of the query answer reaches the value tree.

4.1 Syntax

A query on a dimension graph comprises annotations of the graph dimensions
with sets of values and specifications of precedence relationships between the
graph dimensions.

Definition 6. Let G be a dimension graph over a dimension set D. A query Q
on G is a pair (A,P), where:
(a) A is a set of expressions of the from Di = Ai, where Di is a dimension in

G different than R, and Ai is a set of values of dimension Di or a question
mark (“?”). If Di = Ai belongs to A, we say that Di is annotated in Q and
Ai is called the annotation of Di in Q. A dimension can be annotated only
once in a query.

(b) P is a set of precedence relationships which are expressions of the form
Di → Dj or Di ⇒ Dj, where Di and Dj are annotated dimensions of Q.

Sets A and P can be empty. �

We graphically represent a query Q = (A,P) on a dimension graph G by
labeling its nodes by their annotations in A and by adding to it a single (resp.
double) arrow from node Di to node Dj for every precedence relationship Di →
Dj (resp. Di ⇒ Dj) in P . Note that arrows are different than directed edges.
A single (double) arrow Di → Dj (Di ⇒ Dj) denotes that the values used to
annotate Dj should be children (descendants) of the values used to annotate Di.
The unqualified word “arrow” refers indiscreetly to a single or double arrow.

Example 5. Consider the dimension graphs G1,G2, and G3 of Figure 3. Figure
4 shows the graphical representation of different queries on these dimension
graphs. Annotated nodes are shown in the figures with black circles. Precedence
relationships are shown with single or double arrows from one node to another.

Figure 4(a) represents query Q1 = (A1,P1) on dimension graph G1, where
A1 = {brand = {Mac, Sony}, pc type = {Desktop}} and P1 = ∅. In Q1 we do
not specify any precedence relationships between the annotated notes.

Figure 4(b) represents query Q2 = (A2,P2) on dimension graph G2, where
A2 = {pc type =?, brand = {Sony, IBM}, condition = {Used}} and P2 = {pc -

Semantic Integration of Tree-Structured Data Using Dimension Graphs 261

pda_type

mobile_type

accessories

RR

pc_type = ?

brand =
{Sony, IBM}

mobile_type

condition =
{Used}

pc_type =
{Desktop}

brand =
{Mac, Sony}

pc_category condition =
 {Used}

R

pc_type = ?

mobile_type
pc_category

brand =
{Sony, IBM}

Query Q
1
 on G

1
(a)

Query Q
2
 on G

2
(b)

Query Q
3
 on G

3
(c)

Fig. 4. Graphical Representation of Queries

type ⇒ brand}. A double arrow from node pc type to node brand denotes the
precedence relationship in P2.

Figure 4(c) represents query Q3 = (A3,P3) on dimension graph G3, where
A3 = {pc type =?, brand = {Sony, IBM}, condition = {Used}} and P3 = {pc -
type⇒ brand}. Query Q3 is identical to Q2 but it is defined on dimension graph
G3. �

In the following we often identify a query with its graphical representation.

4.2 Semantics

The answer of a query on a value tree T is a set of root-to-leaf paths in T
compactly represented as a subtree of T .

Definition 7. Let G be a dimension graph of a value tree T over a dimension
set D, and Q be a query on G. The answer of Q on T is the maximal1 subtree
T ′ of T such that:
(a) T ′ and T have the same root R.
(b) Every leaf node of T ′ is a leaf node of T .
(c) Every path from the root to a leaf node in T ′ includes one value from every

value set annotating a node in Q.
(d) Every path from the root to a leaf node in T ′ includes one value from every

dimension naming a node annotated with a question mark in Q.
Therefore, for every annotated node (with a value set or a question mark)
in Q, there is one value for the corresponding dimension appearing in every
path from the root to a leaf node in T ′.

(e) For every path p from the root to a leaf node in T ′, and for every precedence
relationship Di → Dj (resp. Di ⇒ Dj) in Q, the value for Dj is a child
(resp. descendent) of the value for Di in p.

If there is no such a subtree T ′, we say that the answer of Q on T is empty.
Symbol ε denotes an empty answer. �
1 Maximality is meant with respect to the number of nodes or edges.

262 T. Dalamagas et al.

Value tree T'1
(a)

Value tree T'2
(b)

Value tree T'3
(c)

pc_type

brand

R

Desktops

r

Mac

Sony

Notebooks

Ultralight

Desktops

Servers

8''

r

IBMSony

pc_type

pc_category

brand

IBM

mobile_type brand

R

Used

condition

Used

Used

condition

Used

r

brand

Sony

condition

R

Notebooks Desktops

pc_type

Used

Multimedia

pc_category

brand

Sony

Fig. 5. Query Answers

Clearly, the answer of a query that does not involve any annotations or arrows
(this is the query (∅, ∅)) on a value tree T is T itself. Annotating a node with a
“?” in a query is different than not annotating this node at all. In contrast to a
non-annotated node, a node that is annotated with a “?” places a value of the
corresponding dimension in every root-to-leaf path in the answer of the query.

Example 6. Consider the queries Q1, Q2 and Q3 on the dimension graphs G1,G2,
and G3, respectively, graphically shown in Figure 4. Consider also the value trees
T1, T2 and T3 of Figure 1. Figure 5 shows the answers T ′

1, T ′
2 and T ′

3 of Q1, Q2

and Q3 on T1, T2 and T3, respectively.
Further, consider the query Q4 = (A4,P4), where A4 = { pc type = {Desk-

tops}, brand = {HP,Gateway}}, and P3 = {pc type→ brand} on the dimen-
sion graph G1 shown in Figure 3. In the value tree T1 shown in Figure 1(a) there
are values of dimension brand that are children of values of dimension pc type.
However, there is no root-to-leaf path that involves values Desktops and HP, or
Desktops and Gateway. Therefore, the answer of Q4 on T1 is empty. �

4.3 Unsatisfiable Queries

A query on a dimension graph G is called unsatisfiable if its answer is empty
on every value tree underlying G. Otherwise, it is called satisfiable. Detecting
the unsatisfiability of a query saves its evaluation on a value tree (which, in any
case, produces an empty answer.) In general, this value tree is much larger than
its dimension graph which might be needed for detecting the unsatisfiability of
the query. The graphical representation of a query provides some intuition on
unsatisfiable queries.

Semantic Integration of Tree-Structured Data Using Dimension Graphs 263

R

pc_type
= ?

brand
= ?

mobile_type

condition

pc_category

Query Q6 on G2

(b)

condition

R

pc_type = ?

mobile_type
= ?

pc_category

Brand = ?

Query Q
5

on G
3

(a)

R

pc_type

brand

mobile_type = ?

condition
 =?

pc_category

Query Q7 on G2

(c)

= ?

Fig. 6. Unsatisfiable Queries

Example 7. Consider the dimension graphs G2 and G3 of Figure 3, and the queries
Q5 on G3, and Q6 and Q7 on G2 graphically represented in Figure 6. These queries
are unsatisfiable.

In query Q5 of Figure 6(a), there is no path from the root of G3 that involves
all the annotated nodes. By Proposition 3 there is no root-to-leaf path in a value
tree underlying G3 that involves values for the annotated dimensions in Q5.

In query Q6 of Figure 6(b), there is a path from the root of G2 through all the
annotated nodes (e.g. the path (R, pc type, pc category, brand)). However,
there are two outgoing single arrows from the same node (node pc type). Clearly,
no two values can be children of the same node in a root-to-leaf path of a value
tree underlying G2.

In query Q7 of Figure 6(c), there is also a path from the root of G2 through
all the annotated nodes (e.g. the path (R, mobile type, brand, condition)).
However, there is a double arrow from node condition to node mobile type in
Q7 and no path from condition to mobile type in G2. By Proposition 3 there
is no root-to-leaf path in a value tree underlying G2 that involves a value for
dimension condition preceding a value for dimension mobile type. �

More generally, we can show the following result that provides sufficient con-
ditions for a query to be unsatisfiable.

Proposition 4. A query Q on a dimension graph G is unsatisfiable if one of the
following conditions holds:

(a) Arrows in Q form a directed cycle.
(b) There are precedence relationships D → Di and D → Dj or precedence

relationships Di → D and Dj → D in Q (Di �= Dj).
(c) There is a precedence relationship Di → Dj in Q but no edge from node Di

to node Dj in G.
(d) There is a precedence relationship Di ⇒ Dj in Q but no edge from node Di

to node Dj in the transitive closure of G (in other words, no path from node
Di to node Dj in G).

(e) The annotated nodes in Q are not on a path from the root of G. �

264 T. Dalamagas et al.

Proof: Conditions (a), (b), (c) and (d) violate condition (e) of Definition 7, as
follows:
(a) If there are arrows in Q that form a directed cycle, say Di → Dj and
Dj → Di, then a value of Dj should be the parent and the child of a value of Di

in the same path of the value tree, which is not possible since there could not be
two nodes on a path in the value tree labeled by values that belong to the same
dimension.
(b) If there are precedence relationships D → Di and D → Dj in Q, then a
value of D should be the parent of a value of Di and a value of Dj in the same
path of the value tree, which is not possible.
(c) If there is a precedence relationship Di → Dj in Q but no edge from node
Di to node Dj in G, then there is not any path with a value from Di being the
parent of a value from Dj in the value tree.
(d) If there is a precedence relationship Di ⇒ Dj in Q but no path from node
Di to node Dj in G, then there is not any path with a value from Di being the
ancestor of a value from Dj in the value tree.
Condition (e) violates condition (a) of Definition 7: If the annotated nodes in
Q are not on a path from the root of G, then the resulting tree will not include
value r as its root, and thus T ′ and T will not have the same root. �

In order to provide necessary conditions for query unsatisfiability, we intro-
duce the concept of an answer path of a query.

Definition 8. Let Q be a query on a dimension graph G. An answer path of Q
in G is a path p in G from the root of G such that:
(a) All the annotated dimensions in Q are on p, and p ends on an annotated

dimension of Q.
(b) If there is a precedence relationship Di → Dj (resp. Di ⇒ Dj) in Q, then

Dj is a child (resp. descendent) of Di in p. �

Example 8. Consider the query Q2 on dimension graph G2 and the query Q3 on
dimension graph G3, which are shown in Figures 4(b) and 4(c), respectively. One
can identify the following answer paths for query Q2 in G2:

R, pc type, brand, condition
R, pc type, pc category, brand, condition
R, pc type, pc category, mobile type, brand, condition

The answer paths for query Q3 in G3 are:

R, pc type, condition, brand
R, pc type, condition, pc category, brand
R, pc type, pc category, brand, condition �

The following proposition provides necessary and sufficient conditions for a
query to be unsatisfiable.

Proposition 5. A query Q on a dimension graph G is unsatisfiable iff there is
no answer path of Q in G. �

Semantic Integration of Tree-Structured Data Using Dimension Graphs 265

Proof: (If part) We show that if Q is satisfiable, there is an answer path of Q in G.
Assume that Q is satisfiable and let value tree T ′ be the answer of Q on a value
tree T . Let p′ = r, v1, . . . , vm be a root-to-leaf path in T ′. By definition, p′ is
also a root-to-leaf path in T . Since p′ satisfies the conditions of Definition 7, the
path p = R, D1, . . . , Dm, where vi ∈ Di, i = 1, . . . , m, satisfies the conditions of
Definition 8. Therefore, p is an answer path of G in Q.

(Only if part) We show that if there is an answer path of Q in G, Q is
satisfiable. Let p be an answer path of Q in G. Let T be the tree induced by a
depth first traversal of G where every occurrence of a node Di of G in T is labeled
by a (the same) value vi of dimension Di. In particular, if Di is a dimension in
Q annotated by the set Ai, vi ∈ Ai. If p = R, D1, . . . , Dk, there is a root-to-leaf
path p′ = r, v1, . . . , vm, k ≤ m, in T such that vi ∈ Di, i = 1, . . . , k. Since p
satisfies the conditions of Definition 8, p′ satisfies the conditions of Definition 7.
Therefore, p′ is a root-to-leaf path in the answer of Q on T . Consequently, the
answer of Q in T is non-empty. We conclude that Q is satisfiable. �

4.4 Query Evaluation

When evaluating a query, we first check it for satisfiability. If a query is satis-
fiable, we proceed to compute its answer on a value tree in three steps. In the
first step, we compute all the answer paths of the query. In the second step,
we generate path expressions based on the answer paths. In the third step we
evaluate the path expressions on the value tree and compose the answer of the
query.

To represent path expressions, we use a notation similar to that of XPath [4].
The fragment of XPath we use involves node names (vi), child axis (/), descen-
dant axis (//), wildcards (∗), unions (|). The expression (v1| . . . |vm) represents
any node name in the set {v1, . . . , vm}. For a dimension D, we use the expression
∗D as an abbreviation for the expression (v1| . . . |vn), where {v1, . . . , vn} = D.

Given an answer path, we construct a corresponding path expression as fol-
lows. Let R, D1, . . . , Dk be an answer path of a query Q. The corresponding path
expression has the form r/θ1/ . . . /θk, where, for i = 1, . . . , k,

θi =
{

(v1| . . . |vm) if Di is annotated with the value set {v1, . . . , vm}
∗Di if Di is annotated with a “?” or if Di is not annotated

Notice that even though nodes annotated with a “?” are treated the same
way as non-annotated ones in the construction of path expressions for a query,
they affect differently the answer of a query since they are taken into account in
the identification of answer paths for that query.

Before showing what the result of a path expression on a value tree is, we
introduce the concept of a merge of a set of value trees (or paths). Let T1, . . . , Tk

be a set of value trees having the same root r. The merge of T1, . . . , Tk, denoted
T1 ∪ . . .∪ Tk, is a minimal2 value tree which has T1, . . . , Tk as subtrees. It is not
difficult to see that this value tree is unique.
2 Minimality is meant with respect to the number of nodes or edges.

266 T. Dalamagas et al.

We show now what is the result of a path expression on a value tree. Let
e be a path expression and T be a value tree. Let also P be the set of paths
from the root of T to the leafs of T that satisfy e. The result res(e, T) of a path
expression e on a value tree T is the value tree

⋃
p∈P p. Note that the result of a

path expression is different than the result of the same XPath expression. The
result of a path expression is a value tree while the result of the same XPath
expression is a set of nodes [4]. We can use XQuery [5] to compute the result of
a path expression as it is defined here.

The answer of a query on a value tree can be computed by merging the results
of its path expressions on the value tree. Let E = {e1, . . . , en} be the set of path
expressions constructed from all the answer paths of a query Q. The answer of
Q on a value tree T is the value tree

⋃
i∈[1,n] res(ei, T).

Example 9. Consider the query Q2 on dimension graph G2, which is shown in
Figure 4(b). The answer paths for Q2 in G2 are shown in Example 8. These
answer paths generate the following path expressions:

r/ ∗pc type /(Sony|IBM)/Used
r/ ∗pc type / ∗pc category /(Sony|IBM)/Used
r/ ∗pc type / ∗pc category / ∗mobile type /(Sony|IBM)/Used

Evaluating these path expressions on the value tree T2 of Figure 1(b), one
can see that the result of the first path expression is an empty value tree. In
contrast, the second path expression contributes one path, while the third one
contributes two paths to the answer of Q2 on T2 (Figure 5(b)).

Consider also the query Q3 on dimension graph G3, which is shown in Figure
4(c). The answer paths for Q3 in G3 are shown in Example 8. They generate the
following path expressions:

r/ ∗pc type /Used/(Sony|IBM)
r/ ∗pc type /Used/ ∗pc category /(Sony|IBM)
r/ ∗pc type / ∗pc category /(Sony|IBM)/Used

Of those path expressions, evaluating the third one on the value tree T3 of
Figure 1(c) results in an empty value tree. Only the first two contribute paths
to the answer of Q3 on T3 (Figure 5(c)). �

5 Data Source Integration

There are two major approaches to integrating data sources: the materialized
(or data warehousing) and the virtual (or mediated) [32]. In the materialized
approach, data are extracted from the data sources, integrated, and stored in a
repository (the data warehouse). User queries are addressed to the data ware-
house and are evaluated locally. When the data sources change, the stored data
need to be maintained. This is a drawback of the materialized approach for
applications that require current data. In the virtual approach, a global (or me-
diated) logical schema is used purely for the purpose of user query formulation
[20]. Mappings are established between the global schema and the schemas of

Semantic Integration of Tree-Structured Data Using Dimension Graphs 267

Global Graph G Global Site

Local Graph G
1

and

Value Tree T
1

Data Source 1 Data Source n

Global
Query

Local
Answer

...

Global
Query

Local
Answer

Local Graph G
n

and

Value Tree T
n

User

Global Query
Global Answer

Fig. 7. A data integration system architecture

the data sources. User queries are posed on the global schema and they are
transformed to queries on the data sources using these mappings. These later
queries are sent to and evaluated at the data sources and their answers are sent
back and combined for presentation to the user. The virtual approach guarantees
that answer data are always current. Hybrid approaches combine features of the
materialized and virtual approaches [21].

We follow a virtual approach adapted to the type of data structures we
consider here. There are two key differences with respect to a traditional virtual
approach:

(a) Since we are dealing with tree structures we do not have schemas. User queries
are posed on a dimension graph constructed by integrating the dimension
graphs of the value trees of the different data sources. We qualify this new
dimension graph as global as opposed to the dimension graphs of the data
sources which are characterized as local.

(b) Queries on the global dimension graph (global queries) are translated into
queries on the dimension graphs of the data sources (local queries). However,
a global query does not need any transformation to become a local query. It
can either be defined on a local dimension graph or not.

Figure 7 shows the architecture of our data integration system. Each data
source i contains a value tree Ti and its local dimension graph Gi. Each value
in Ti is mapped to a dimension. The global site contains the global dimension
graph. We show how a global dimension graph is constructed in Section 5.1.
Global queries are posed by the users on this dimension graph. They are formally
defined in Section 5.2. Global queries are checked for satisfiability at the global
site. They are potentially forwarded to the data sources where they are evaluated
on the local dimension graphs and value trees, and their answers are sent back
to the global site. The process of evaluating global queries is described in Section
5.3.

5.1 Global Dimension Graph Construction

The global dimension graph is constructed from the local dimension graphs.

268 T. Dalamagas et al.

R

mobile_type

pc_category

brand

pda_type

accessories

condition

pc_type

Global dimension graph G

Fig. 8. The global dimension graph G for G1,G2 and G3

Definition 9. Let G1 = (N1, E1), . . . , Gn = (Nn, En) be local dimension graphs
of value trees over dimension set D. A global dimension graph G for G1, . . . , Gn

is a dimension graph (N, E), where N is a set of nodes and E is a set of edges
defined as follows:

(a) N = N1 ∪ . . . ∪Nn.
(b) There is a directed edge in E from node Di to node Dj iff there is a directed

edge from node Di to node Dj in some local dimension graph. �
Example 10. Consider the local dimension graphs G1,G2, and G3 of Figure 3.
Figure 8 shows the global dimension graph G for G1,G2, and G3.

Notice that G has cycles (e.g. pc category,mobile type, brand, condition,
pc category) that do not appear in any of the local dimension graphs. �

5.2 Queries on Global Dimension Graphs

The syntax of global queries is identical to that of local queries (see Section 4.1).
Global queries are posed on global graphs.

Example 11. Consider the global dimension graph G of Figure 8. Figure 9(a)
shows a graphical representation of query Q8 on G. As with the representation
of local queries, annotated nodes are shown with filled black circles. �

R

mobile_type

pc_category

brand =
{Sony, IBM}

pda_type

accessories

condition
= {used}

pc_type
= ?

Global query Q8

(a)

R

mobile_type

pc_category

pda_type

accessories

Global query Q9

(b)

pc_type
= ?

condition
= {used} brand =

{Sony, IBM}

Fig. 9. Global queries Q8 and Q9

Semantic Integration of Tree-Structured Data Using Dimension Graphs 269

The answer of a global query is defined in terms of the answer of a local
query.

Definition 10. Let G1, . . . , Gn be local dimension graphs of value trees T1, . . . , Tn

respectively over dimension set D. Let also G be a global dimension graph for
G1, . . . ,Gn and Q be a query on G. The answer of Q on the list of value trees
T1, . . . , Tn is a list T ′

1, . . . , T
′
n, where each T ′

i , i = 1, . . . , n, is defined as follows:

1. If there is an annotated dimension in Q that does not appear in Gi, then T ′
i is

ε (empty answer). In this case, we say that the global query Q is not definable
on the local dimension graph Gi.

2. Otherwise, let Qi be the query Q on the local dimension graph Gi. T ′
i is the

answer of query Qi on Ti. �

Example 12. Consider the global query Q8 of Figure 9(a) and the local value
trees T1, T2 and T3 of Figure 1. The local dimension graphs G1, G2 and G3 of
the local value trees T1, T2 and T3 are shown in Figure 3. Query Q8 annotates
dimension condition that does not appear in G1. All the annotated dimensions
of Q8 appear in G2 and G3. Query Q8 on G2 is the local query Q2 shown in
Figure 4(b), while query Q8 on G3 is the local query Q3 shown in Figure 4(c).
The answers of Q2 and Q3 on the local trees T2 and T3 underlying the local
dimension graphs G2 and G3 are the value trees T ′

2 and T ′
3 shown in Figure 5(b)

and 5(c) respectively. Therefore, the answer of Q on T1, T2, T3 is ε, T ′
2, T ′

3. �

A (global) query on a global dimension graph G is called unsatisfiable if its
answer is a list of empty answers on every list of value trees that have G as
the global dimension graph of their local dimension graphs. Otherwise, it is
called satisfiable. Clearly, the necessary and sufficient conditions provided by
Proposition 5 for a local query to be unsatisfiable also hold for a global query.

5.3 Global Query Evaluation

Global query evaluation can be described in three phases. The first phase involves
the global dimension graph, the second phase the local dimension graphs and
the third phase the value trees.

In the first phase, the global query is checked for satisfiability at the global
site. This check involves only the global query and the global dimension graph.
If the query is satisfiable, it is sent to the data sources.

In the second phase, each data source checks if the global query is definable
on its local dimension graph. If a global query is not definable at a data source,
an empty answer is returned to the global site. Otherwise, it is checked for
satisfiability as a local query. Notice that a query on a local graph may be
unsatisfiable even if the same query on the global graph is satisfiable. The reason
is that a local graph may be more restricted than the global graph: there may
be paths or directed edges between two nodes in the global graph that do not
exist between the same nodes on a local graph. Conditions (c), (d), and (e)
of Proposition 4 show that the lack of these paths or edges may imply the

270 T. Dalamagas et al.

unsatisfiability of the local query. If a local query is unsatisfiable, an empty
answer is sent to the global site by the corresponding data source.

Example 13. Consider the global query Q9 on the global dimension graph G
graphically represented in Figure 9(b). This query involves an arrow from node
pc type to node brand. It is satisfiable since there is an edge in G from node
pc type to node brand. In contrast, the same query on the local dimension graph
G3 of Figure 4(c) is unsatisfiable since there is no such an edge G3. �

In the third phase, satisfiable local queries are evaluated as described in
Section 4, and the answers are sent to the global site for presentation to the
user. Figure 10 outlines the different phases of the evaluation of a global query.

Global
Query Empty

Global
Answer

Non-Empty
Global

Answer

unsatisfiable

satisfiable

all empty

some non-empty

Empty
Local

Answer

undefinable

unsatisfiable

Local
Query

Non-empty
Local

Answer

Global
Query

definable

satisfiable
Local
Query

empty answer

non-empty answer

Phase 3:
On Local Value

Tree

Phase 2:
On Local Dimension

Graph

Phase 1:
On Global Dimension

Graph

Global
Satisfiability

Checking

Local
Definability
Checking

Local
Satisfiability

Checking

Local
Query

Evaluation

Empty Local
Answer

Counting

A
t

a
D

at
a

 S
ou

rc
e

A
t

th
e

G
lo

ba
l S

ite

Fig. 10. Global Query Evaluation

6 Experimental Evaluation

We implemented and compared our integration strategy against one that does
not exploit dimension graphs to query multiple tree-structured data sources. We
briefly summarize the two integration strategies:
A1 : Queries are formed on the global dimension graph. The evaluation of a

query on a value tree is performed only if the query is satisfiable on the global
dimension graph, as well as definable and satisfiable on the local dimension
graph of this value tree. This is the approach suggested in this paper.

Semantic Integration of Tree-Structured Data Using Dimension Graphs 271

A2 : Queries are formed directly using sets of path expressions (parent/child
and ancestor/descendant relationships) that involve values from value trees.
Given these sets, the system generates all the possible orderings of the values
that respect the parent/child and ancestor/descendant relationships specified
in the path expressions. Each one of these orderings corresponds to a single
path expression to be evaluated on a value tree. This approach does not
exploit dimension graphs for the evaluation of queries.

In order to maintain similar query sets for both approaches, our experimen-
tal platform transforms queries on the global dimension graph that involve
dimensions into sets of simple path expressions to be matched by the same
path of the value tree. Consider, for instance, the query (A,P), where A =
{pc type = {Notebooks}, brand = {Sony, IBM}, condition = {Used}} and P =
{pc type → brand}. The set of simple path expressions for approach A2 is
{r//Notebooks/ (Sony|IBM), r//Used}. The corresponding path expressions
to be evaluated on the value tree are r//Notebooks/(Sony|IBM)//Used and
r//Used//Notebooks/(Sony|IBM).

We used a set of synthetic value trees, and we measured the execution time
for evaluating queries on a global dimension graph. The set of value trees was
constructed as follows. We generated a random set of 30 dimensions with 10
values each (a total of 300 distinct values), and we created 10 random value trees
using those values. The actual number of values in the value trees ranges from 280
to 500. Queries were generated by randomly annotating dimensions in dimension
graphs and adding arrows. In order to add arrows to the annotated dimensions of
the query, the generator first creates a fully connected graph, involving only the
annotated dimensions. Then, if n arrows need to be created, it removes arrows
until n are left. The percentage of single arrows in the total number of arrows
in the query is a system parameter and depends on the experiments.

6.1 Experiments and Results

We carried out three different types of experiments3 to study the differences in
the execution time of the two integration approaches. For every measure point
in the x-axis, 10 queries were generated for each one of the 10 value trees. The
recorded execution time per point is the average execution time.

Varying the Size of the Queries

Satisfiable and Unsatisfiable Queries. We measured the execution time varying
the percentage of arrows (i.e. precedence relationships) for different numbers of
annotated dimensions in the queries. The percentage of arrows is the ratio of the
number of arrows to the total number of possible arrows in the query. Note that

3 All the experiments were carried out on an AMD Sempron 2600 PC with 512MB
RAM.

272 T. Dalamagas et al.

a percentage of arrows of 100% means that the arrows and the annotated di-
mensions of the query form a fully connected graph. In Figure 11, we present the
results obtained for global queries having 2 to 8 annotated dimensions, varying
the percentage of arrows. The y-axis is on a logarithmic scale. The number of di-
mensions is fixed to 30. In each query, 50% of the arrows were single (parent/child
relationships) and 50% were double (ancestor/descendant relationships). In this
particular experiment, 50% of queries executed were unsatisfiable. In any case,
the approach A1 clearly outperforms A2.

For both approaches, as the percentage of arrows increases, the execution
time drops. This is explained by the fact that, as the number of arrows increases,
fewer path expressions are generated by both approaches to be matched on the
value tree.

As the number of annotated dimensions increases, the execution time in
approach A1 drops. This is expected, since for a fixed dimension graph, an
increase in the number of annotated dimensions reduces the number of possible
answer paths (recall that an answer path involves all the annotated dimensions).
Therefore, the number of path expressions generated by approach A1 to match
the values tree is reduced too.

In approach A2, as the number of annotated dimensions increases, the query
execution time raises significantly for low arrow percentage, but the steepness
of the fall of the curve raises too. The curve hits the x-axis closer to 0 as the
number of annotations raises. This can be explained as follows. As the number of
annotated dimensions increases, the number of possible value orderings increases
exponentially. For a fixed set of arrows, this increase results in an increase on the
number of path expressions generated. However, for a fixed percentage of arrows,
the number of arrows increases too when the number of annotated dimensions
increases. As we explained above, increasing the number of arrows reduces the
number of path expressions generated. For a fixed percentage of arrows, after a
certain threshold number of annotated dimensions, the increase in the number
of arrows dominates and the number of generated path expressions drops.

Only Satisfiable Queries. We performed the previous experiment with only sat-
isfiable queries. We observed that approach A1 outperforms approach A2 even in
this case. Figure 12 shows, for example, the results obtained for queries having
3 and 4 annotated dimensions, varying the percentage of arrows.

Varying the Type of Arrows in the Queries

Satisfiable and Unsatisfiable Queries. We measured the execution time varying
the percentage of single arrows in the total number of arrows in the global query
for different pairs of numbers of annotated dimensions and arrows. In Figure 13,
we present the results obtained for queries having (a) 6 annotated dimensions
and 4 arrows, (b) 7 annotated dimensions and 4 arrows, and (c) 7 annotated
dimensions and 5 arrows.

The higher the percentage of single arrows, the lower the number of possible
orderings of values needed for A2. This is reflected in the diagram, since there

Semantic Integration of Tree-Structured Data Using Dimension Graphs 273

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=2)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=3)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=4)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=5)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=6)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=7)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=8)

App 1
App 2

Fig. 11. Execution time varying the percentage of arrows for different numbers of

annotated dimensions in the global query (50% of queries executed were unsatisfiable)

274 T. Dalamagas et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=3)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (ANNOTATION=4)

App 1
App 2

Fig. 12. Execution time varying the percentage of arrows for different numbers of

annotated dimensions in the global query (all queries executed were satisfiable)

is a drop in the execution time as the percentage of single arrows increases for
A2. For A1, higher percentage of single arrows means less answers paths. The
reason is that the constraints imposed by single arrows are more restrictive than
those of double arrows. This is also reflected in the diagram, since there is a
drop in the execution time as the percentage of single arrows increases for A1.
In any case, the approach A1 outperforms A2 since it is able to exploit the
global dimension graph and the local dimension graphs to detect unsatisfiable
queries, and to reduce the number of path expressions generated. The approach
A1 outperforms A2 by three to four orders of magnitude.

Only Satisfiable Queries. We performed the previous experiment with only sat-
isfiable queries. Even in this case approach A1 outperforms approach A2. Figure
14 shows for example the results obtained for queries having (a) 6 annotated
dimensions and 4 arrows, and (b) 7 annotated dimensions and 5 arrows.

Varying the Size of Dimension Graphs

Satisfiable and Unsatisfiable Queries. We calculated the execution time for dif-
ferent sizes of global dimension graphs, varying the percentage of arrows. The
number of annotated dimensions is fixed for different numbers of dimensions. In
Figure 15, we present the results obtained for global dimension graphs having
30, 34, 38 and 42 dimensions. In each global query, the number of annotated
dimensions was fixed to 6 and 50% of the arrows were single ones.

Before we discuss the results, we explain the way we increase the size of a
global dimension graph. Starting from a fixed value tree, its partition and a set of
annotated dimensions, we generate queries by randomly adding arrows between
those annotated dimensions. At the next step, a dimension is randomly selected
to be split, and produces two new dimensions. The arrows are re-assigned to
the new dimensions that contain the annotated values. When the number of
dimensions increases, their number of values per dimension decreases on the
average. In general, this results in a sparser graph and reduces the number of

Semantic Integration of Tree-Structured Data Using Dimension Graphs 275

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

Arrow Type Quota

TIME - ARROW TYPE QUOTA (ANNOTATION=6, ARROW=4)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

Arrow Type Quota

TIME - ARROW TYPE QUOTA (ANNOTATION=7, ARROW=4)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

Arrow Type Quota

TIME - ARROW TYPE QUOTA (ANNOTATION=7, ARROW=5)

App 1
App 2

Fig. 13. Execution time varying the percentage of single arrows in the total number

of arrows in the global query, for different pairs of numbers of annotated dimensions

and arrows (50% of queries executed were unsatisfiable)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

Arrow Type Quota

TIME - ARROW TYPE QUOTA (ANNOTATION=6, ARROW=4)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

Arrow Type Quota

TIME - ARROW TYPE QUOTA (ANNOTATION=7, ARROW=5)

App 1
App 2

Fig. 14. Execution time varying the percentage of single arrows in the total number

of arrows in the global query, for different pairs of numbers of annotated dimensions

and arrows (all queries executed were satisfiable)

answer paths of a query. This is reflected in the diagram, since there is a drop
in the execution time for A1 as the number of dimensions increases.

Note that in this experiment, the execution time of the approach A2 remains
unaffected from the increase in the number of dimensions, since the queries do

276 T. Dalamagas et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (DIMENSION=30)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (DIMENSION=34)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (DIMENSION=38)

App 1
App 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (DIMENSION=42)

App 1
App 2

Fig. 15. Execution time varying the percentage of arrows for different numbers of

dimensions in the global dimension graph (50% of queries executed were unsatisfiable)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

T
im

e
(m

s)

Arrow Quota (%)

TIME - ARROW QUOTA (DIMENSION=34)

App 1
App 2

Fig. 16. Execution time for 34 dimensions in the global dimension graph (all queries

executed were satisfiable)

not change and the approach A2 does not involve dimensions and the global
dimension graph. The approach A1 clearly outperforms A2.

Only Satisfiable Queries. Approach A1 outperforms approach A2 even when
the previous experiment is ran with only satisfiable queries. Figure 16 shows, for
example, the results obtained for 34 dimensions.

Semantic Integration of Tree-Structured Data Using Dimension Graphs 277

7 Conclusions

We presented a method for integrating value trees that have structural differences
and inconsistencies. Our approach exploits semantic information for the nodes of
value trees. A semantic relationship between nodes in value trees was captured by
the concept of a dimension. Dimension graphs were defined to capture structural
information on the dimensions of a value tree. However, dimension graphs are
not plain structural summaries of value trees, but rather semantically richer
constructs that are able to support semantic integration of tree-structured data.
We designed a query language to query value trees. Queries are specified on the
dimensions of the value tree and can optionally involve parent-child and ancestor-
descendant relationships between these dimensions. We provided necessary and
sufficient conditions for query unsatisfiability and we presented a technique for
evaluating satisfiable queries. We defined global dimension graphs by merging
dimension graphs of local data sources. Queries are issued on the dimensions of
a global dimension graph. Thus, in our approach for integrating data sources, a
query is not restricted by the structure of a specific local value tree. We presented
a technique to evaluate queries issued on global dimension graphs, first on the
global site and then on local data sources. We conducted experiments to compare
our integration method against one that does not exploit dimension graphs to
query multiple tree-structured data sources. Our results demonstrated the clear
superiority of our approach.

Our future work will focus on the problem of determining dimensions for the
nodes of value trees. This is called dimensioning problem. Currently we assume
that the assignment of nodes to dimensions is given. We are interested in studying
how this process can be supported by the use of classification hierarchies and
ontologies and how such a semi-automatic method would affect our approach.

References

1. Exchangeable Faceted Metadata Language, (XFML), 2003, http://www.xfml.org/.

2. XML Topic Maps (XTM), 2001, http://www.topicmaps.org.

3. World Wide Web Consortium site (W3C), http://www.w3c.org.

4. XML Path Language (XPath). World Wide Web Consortium site (W3C), 2003-
2005, http://www.w3c.org/TR/xpath20/.

5. XML Query (XQuery). World Wide Web Consortium site (W3C), The Architecture
Domain. 2003-2005, http://www.w3.org/XML/Query.

6. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco,
California, 2000.

7. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-based integration
of XML web resources. In Proceedings of the 1st International Semantic Web
Conference (ISWC’02), Sardinia, Italy, June 2002.

8. S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In Proceed-
ings of the 8th Conference on Extending Database Technology (EDBT’02), Prague,
Czech Republic, Mar 2002.

278 T. Dalamagas et al.

9. R. Behrens. A grammar based model for XML schema integration. In Proceedings
of the 17th British National Conference on Databases (BNCOD’00), Exeter, UK,
Jul 2000.

10. S. Bergamaschi, F. Guerra, and M. Vincini. A data integration framework for e-
commerce product classification. In Proceedings of the 1st International Semantic
Web Conference (ISWC’02), Sardinia, Italy, Jun 2002.

11. P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding structure to
unstructured data. In Proceeding of the 6th International Conference on Database
Theory (ICDT’97), Delphi, Greece, Jan 1997.

12. S. D. Camillo, C. A. Heuser, and R. dos Santos Mello. Querying heterogeneous
XML sources through a conceptual schema. In Proceeding of the 22nd International
Conference on Conceptual Modeling (ER’03), Chicago, IL, USA, Oct 2003.

13. A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management. Addison
Wesley, 2003.

14. V. Christophides, S. Cluet, and J. Simeon. On wrapping query languages and
efficient XML integration. In Proceedings of the International Conference on Man-
agement of Data (ACM SIGMOD’00), Dallas, Texas, USA, May 2000.

15. S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository.
In Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB’01), Rome, Italy, Sep 2001.

16. R. dos Santos Mello and C. A. Heuser. A bottom-up approach for integration
of XML sources. In Proceedings of the International Workshop on Information
Integration on the Web (WIIW’01), Rio de Janeiro, Brazil, Apr 2001.

17. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: A sys-
tem for extracting document type descriptors from XML documents. In Proceed-
ings of the International Conference on Management of Data (ACM SIGMOD’00),
Dallas, Texas, USA, May 2000.

18. R. Goldman and J. Widom. DataGuides: Enabling query formulation and opti-
mization in semistructured databases. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB’97), Athens, Greece, Aug 1997.

19. S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. Approximate
XML joins. In Proceedings of the International Conference on Management of
Data (ACM SIGMOD’02), Madison, USA, Jun 2002.

20. A. Halevy. Data integration: a status report. In Proceedings of the Datenbanksys-
teme fur Business, Technologie und Web (BTW’03), 2003.

21. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Proceedings of the 16th Symposium on Principles of Database Systems (ACM
PODS’97), Tucson, Arizona, May 1997.

22. D. Kim, J. Kim, and S.-G. Lee. Catalog integration for electronic commerce
through category-hierarchy merging technique. In Proceedings of the 12th Inter-
national Workshop on Research Issues in Data Engineering (RIDE’02), San Jose,
USA, Mar 2002.

23. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. XClust: Clustering XML schemas for
effective integration. In Proceedings of the 11th International Conference on In-
formation and Knowledge Management (CIKM’02), McLean, Virginia, USA, Nov
2002.

24. M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
21st Symposium on Principles of Database Systems (ACM PODS’02), Madison,
Wisconsin, USA, Jun 2002.

Semantic Integration of Tree-Structured Data Using Dimension Graphs 279

25. I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries over het-
erogeneous data sources. In Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB’01), Rome, Italy, Sep 2001.

26. P. J. Marron, G. Lausen, and M. Weber. Catalog integration made easy. In
Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
(poster), Bangalore, India, Mar 2003.

27. N. Polyzotis and M. Garofalakis. Statistical synopses for graph-structured XML
databases. In Proceedings of the International Conference on Management of Data
(ACM SIGMOD’02), Madison, USA, Jun 2002.

28. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334 – 350, 2001.

29. S. Ram and V. Ramesh. Management of Heterogeneous and Autonomous Database
Systems. Morgan Kaufmann Publishers, 1999.

30. D. Theodoratos and T. Dalamagas. Querying tree-structured data using dimen-
sion graphs. In Proceedings of 17th Conference on Advanced Information Systems
Engineering (CAiSE’05), Porto, Portugal, Jun 2005.

31. Y. Tzitzikas, N. Spyratos, P. Constantopoulos, and A. Analyti. Extended faceted
taxonomies for web catalogs. In Proceedings of the 3rd International Conference on
Web Information Systems Engineering (WISE’02), Grand Hyatt, Singapore, Dec
2002.

32. J. Widom. Research problems in data warehousing. In Proceedings of the 4th
International Conference on Information and Knowledge Management (CIKM’02),
Baltimore, Maryland, USA, Dec 1995.

KDD Support Services Based on Data Semantics

Claudia Diamantini, Domenico Potena, and Maurizio Panti

Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione,
Università Politecnica delle Marche,

via Brecce Bianche, 60131 Ancona, Italy
{diamanti, d.potena, panti}@diiga.univpm.it

Abstract. The identification of valid, novel and interesting models from
large volumes of data is the primary goal of Knowledge Discovery in
Databases (KDD). In order to successfully achieve such a complex goal,
many kinds of semantic information about the KDD and business do-
mains is necessary. In this paper, we present an approach to the charac-
terization of semantic domain information for a particular kind of KDD
process: classification. In particular we show how, by estimating the prop-
erties of the true but unknown classification model, one can derive do-
main information on the classification problem at hand. We discuss how,
by saving these properties with the data, users profit from this infor-
mation and save time for experimenting with a lot of classifiers and
parameters by accessing this knowledge.

Keywords: Data Mining, Data Semantics, Classification, Decision Bor-
der, User Support.

1 Introduction

Knowledge Discovery in Databases (KDD) emerged as a rapidly growing inter-
disciplinary field that merges together databases, statistics, machine learning
and related areas in order to extract valuable information and knowledge in
large volumes of data. KDD aims to overcome the limitations of traditional
database queries, and of the more recent OLAP techniques, in order to support
analysis and decision-making. These techniques can in fact help to extract in-
formation conforming to a predefined, previously known data model, but they
do not allow us to identify novel, interesting models in data. For instance, these
techniques cannot help in answering the following query: “Find network con-
nection records indicating an intrusion”, just because we do not have a model
of what an intrusion is. However, even if our model of connection (e.g., the set
of attributes ‘connection length’, ‘protocol’, ‘service’, ‘number of failed login at-
tempts’, ‘number of root accesses’ and ‘number of connections to the same host’)
does not explicitly contain a model of intrusion, we can assume that the latter
can be established from the former, in terms of typical patterns representing
relations among the basic model attributes. For instance, “If (‘number of con-
nections to the same host’ ≥ 10) and (‘protocol’ = UDP) and (‘service’ = echo)
and (‘number of pending connections’ = ‘number of connections to the same

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 280–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

KDD Support Services Based on Data Semantics 281

host’) Then (Prediction = DoS)” can be the model of one type of intrusion.
This rationale underpins KDD, which studies techniques and methodologies to
reveal unknown relations from available data. More formally, we define KDD as
“the process of identifying valid, novel, potentially useful and ultimately under-
standable patterns/models in data”, where data are defined as a set of facts F
described by a database schema and patterns are defined as “an expression E in
some language L describing facts in a subset FE of F” [10, chap. 1]. Notice that,
since patterns should be valid and potentially useful, an expression E should
not limit itself to the description of the database instances, it should rather be
capable of describing any new instance that could at any time be added to the
database. In other words, the expression E describes the real phenomenon of
which database instances are particular realizations. We often synthesize this
by saying that KDD is a model induction activity. Different languages L define
different kinds of models that can be induced. Models can be basically split into
predictive ones (e.g., classification or regression models) and descriptive ones
(e.g., clustering models or association rules). In the following we will consider
classification models. Classification models give a description of a set of prede-
fined classes, like e.g. the ‘normal connection’ and ‘intrusion’ classes, which are
relevant for a given prediction or recognition task. Hence, in the same way a
database schema defines the semantics of its instances, the schema of a classi-
fication model defines the semantics of the classification problem, that is of the
set of classes chosen for the specific user goal (e.g., to detect intrusions).

Although a classification model is typically considered as the final result of a
KDD process, it has yet another important role. As a matter of fact, to be effec-
tive, the model induction process must be guided by different kinds of domain
information: information about how induction techniques work and how these
can be applied in the specific business domain, the kinds of regularities one can
expect to find in data and so on. In other words, we need to know the semantics
of the KDD domain as well as the semantics of the business domain and how
these interact. From this perspective, a classification model contains important
business domain information that could be profitably used to guide the model
induction process. In the next section, we will discuss the role of domain infor-
mation in KDD in general, and in the classification task in particular, in deeper
detail.

The contribution of this paper is an approach to characterize the semantics
of classification problems, in terms of geometric properties of the classification
model. The approach resorts on the relatively cheap Bayes risk weighted Vector
Quantization (BVQ) learning algorithm [8] to define the analytic form of a good
estimation of the true but unknown classification model. The analytical descrip-
tion is then used to derive some properties of the model that helps to choose
probably the best classification method for the given problem, to appropriately
prepare data and to train a classifier for the best classification method. By sav-
ing the analytical description of the classification model and its properties with
the data, users profit from this information and save time in experimenting with
a lot of classifiers and parameters by having access to this knowledge.

282 C. Diamantini, D. Potena, and M. Panti

The rest of the paper is organized as follows. In section 2, we briefly intro-
duce the KDD environment, highlighting the major sources of complexity in the
design of a KDD process, and introducing the main approaches proposed in the
literature to overcome this complexity by exploiting information about the KDD
and business domains. We then narrow the discussion on the classification prob-
lem. In section 3 we introduce the definition of nearest neighbor Vector Quantizer
(VQ) and its geometrical properties, and we show how to obtain the analytical
description of a VQ. Then, in section 4 we describe our VQ-based learning ap-
proach to obtain an approximation of a classification model and its analytical
description. Section 5 is devoted to the discussion on the possible types of de-
ductions on the geometry of the classification model which is derived from the
analytical definition, and how the accuracy of the approximation influences the
validity of the discovered knowledge. In section 6 we empirically demonstrate the
validity of the approach by means of real-world classification problems. Finally,
in section 7 we cast a look on the possible application of the derived informa-
tion regarding the classification model in the implementation of semantic KDD
support services over a net. We will come to a conclusion in Section 8.

2 The Role of Semantics in KDD Process Design

KDD as a discipline studies the definition of reference models of a process of
knowledge discovery from data. According to methodological standards [10,27],
a process of discovery from data can be divided into six principal phases: Do-
main Understanding, Data Selection, Data Preprocessing, Transformation, Data
Mining, Interpretation/Evaluation (see the schema in Figure 1). The core phase
of the process is the Data Mining (DM) phase, where model induction is per-
formed by one of the many available techniques. These techniques largely have a
statistical foundation, and they require proper conditions of application. For this
reason, the DM phase is preceded in any process model by a data preparation

Fig. 1. The KDD process

KDD Support Services Based on Data Semantics 283

phase, that can be further split in data and attribute (feature) selection, data
preprocessing (e.g., the cleaning of data), data transformation (e.g., by normal-
ization). Furthermore, it is known that, to be efficient and effective, statistical
techniques should be guided by some model-driven hypothesis. So, the starting
phase of the KDD process is devoted to domain and data understanding, where
one has to find out the best representation of the business goal in terms of data
mining goals, and envisage the best data structures and techniques to achieve
that goal. In practice, this means drawing a rough model of the business and
of the entities involved, to form some model-driven hypothesis on the kind of
regularities which can be found in data and focus the search towards the most
appropriate techniques. The ending phase is finally devoted to explanation and
evaluation of the discovered knowledge inside the domain.

The intrinsic complexity of the design of a KDD process is due to the nu-
merous degrees of freedom the user has to work with and to the goal-driven and
domain dependent nature of the problem. When an analyst starts the discovery
process, for example, she/he has to wonder: what are the database instances to
select? How can I discriminate the noisy data from the informative one? Are all
the data attributes equally important? Which is the best technique and algo-
rithm to apply, and how the choice of the algorithm influences previous choices?
How should one set the algorithm’s parameters? Of course, the answer to these
questions strictly depends on the problem and data at hand. On the other hand,
the existence of a great amount of techniques and tools increases the complexity
of choice, as it presupposes a certain degree of acquaintance with the mathemat-
ical theory underlying most of the techniques, so that they can be appropriately
applied all together to the problem at hand, correctly and effectively used. Then,
in order to design a KDD process, two kinds of expertise are needed: in the busi-
ness domain and in the KDD domain. However, the user is typically a domain
expert, but not a KDD expert, or viceversa. Another source of complexity is due
to the intrinsic features of any discovery process, namely the lack of knowledge
and consequently the difficulty to define the best plan to discover that knowledge
beforehand. This fact is recognized in all the existing process models by account-
ing for the need of repeated backtracking to previous phases and repetition of
certain actions: the knowledge acquired during a phase can suggest a revision of
the choices taken at previous steps to enhance their results.

If no support is given to the user, then a blind search over the joint space of
possible tasks, techniques, algorithms, parameters produces inevitably unsatis-
factory results with great effort. Basically, the kind of support that a user can
be given involves the following facilities:

– to understand the business domain and goal and to relate it to a suitable set
of KDD tasks;

– to choose the more suitable tools for the user goals and business domain, on
the basis of a number of characteristics:
• performance (complexity, scalability, accuracy),
• the kind of data they can be used for (textual/symbolic data, numerical

data, structured data, sequences, ...),

284 C. Diamantini, D. Potena, and M. Panti

• the kind of goal they are written for (data cleaning, data transformation,
data mining, visualization, ...),

• the kind of data mining task (classification, rule induction, ...);
this involves facilities to browse the tool repository and to obtain information
about the tools;

– to set algorithm parameters, especially for Data Mining algorithms, in the
appropriate manner with respect to the problem at hand;

– to manage all kinds of data involved in the KDD process, namely, raw and
structured data, intermediate data and models, in terms of access, selection,
preparation of data conforming to the tool input format, and so on;

– to design the KDD process by tool composition;

Most of the previous features rely on different forms of semantic information
about data, tools and business domains. In the literature, the use of domain
ontologies is largely proposed to guide the KDD process and to give support to
domain experts. In [18, chap.23] and [25] a business domain ontology supports
the extraction of novel features, by exploiting relations among domain concepts.
In [16,32] the use of ontologies is proposed to refine the induced knowledge and
to correctly interpret the results. [5] discussed the use of ontologies in the whole
KDD process for the medical domain. Finally, in distributed environments, it
has to be pointed out the role of business domain ontologies both in the search
for appropriate data and in their integration [18, chap.23], [31]. A special kind of
domain ontology is the KDD ontology. A KDD ontology is a conceptualization
of the KDD domain in terms of tasks, techniques, algorithms, tools and tool
properties like performance and the kind of data that can be used for [3,20,33].
As such, a KDD ontology has a similar role with respect to the business domain
ontology: it helps the business expert to understand the KDD domain, so that
he can either effectively collaborate with a KDD expert in the design of a KDD
project, or design the KDD project on his own. In this case, it can support the
user in browsing a tool repository organized with respect to the KDD ontology.
Semantic description of tools is also adopted to support standardization and
process design by tool composition [11,14]. However, to support the proper choice
and use of tools, the semantics of the problem is also needed. For instance, in the
classification task, it is known that different classification techniques work better
on certain classes of classification problems than others. Hence, the classification
model can be exploited as a fundamental domain information to semantically
guide the KDD process design. This principle is the basis of Meta-learning, that
refers to a bulk of techniques to discover domain semantics hidden in data,
which is then used to guide the choice of Data Mining algorithms [2,17] or to
form a prototype domain model that guides further investigations [30]. In the
following subsection we examine this topic thoroughly, for the specific case of
the classification task, by giving a more formal definition of the nature of a
classification problem and discussing how it can support the user in dealing with
each phase of a KDD classification process. At the end of the paper, we will also
discuss the advantages of equipping data published over a net with this kind of
domain semantics, in order to build case-based support services.

KDD Support Services Based on Data Semantics 285

2.1 Evidence-Based Classification Process Design

Let us start with a formal definition of the classification problem:

Definition 1. Given a set Os = {o1, . . . , om} of observation n-tuples and a set
of classes C = {c1, . . . , ck}, the classification problem is to define a classification
rule, that is a mapping Φ : Os → C, where each n-tuple is assigned to a class.
A class cj contains precisely those tuples mapped to it; that is cj = {oi|Φ(oi) =
cj , 1 ≤ i ≤ m, oi ∈ Os}.

Note that classes are predefined, non overlapping and they partition the
entire set of n-tuples. In this sense, the classes of a classification problem are
indeed equivalence classes.

In order to model and characterize the properties of a classification problem,
we can take a geometric point of view. In a geometric model the observation n-
tuples are represented as points in a Rn vector space. In this way, the mapping
Φ defines a partition of the vector space, where each partition region defines
an equivalence class. These regions are called decision regions, while the border
between decision regions is called the decision border (see Figure 2).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class A

Class A

Class B

decision border

Fig. 2. A two dimensional vector space, with decision regions and the decision border

for a two-class problem

The geometric properties of the decision regions have their natural interpre-
tation as properties of the true classes or, in other terms, classification problems
can be characterized in terms of the properties of the decision regions. For in-
stance, we speak of linearly separable classification problem, when it is possible
to separate classes without error by a hyperplane. On the other hand, when the
decision border is a generic (possibly non connected) curve, then we speak of
non linearly separable classification problems.

286 C. Diamantini, D. Potena, and M. Panti

Let us illustrate how the decision regions (or, equivalently, the decision bor-
der) define an evidence that can guide the choices during the whole classifica-
tion process. To start with, it is straightforward to observe that a general (and
generic) knowledge of the shape of the decision regions and their localization in
the vector space can be very useful in the preliminary data analysis phase. As
a matter of fact, one of the most useful techniques adopted during this phase
is visualization, since, it is said that, the most powerful data miner tool is the
human eye. Unfortunately, visualization techniques can be directly applied only
in problems of low dimensionality, say from one to three dimensions. The ana-
lytical form of the decision border could give important geometric information
about the problem that cannot be visually inspected.

A particular form of data selection is called data reduction in the literature.
It is a technique exploited in combination with non scalable algorithms, that is
algorithms whose high cost make them unsuitable for the management of large
amounts of data. Data reduction in classification problems can be performed by
eliminating those samples falling far from the decision border, as less informative
samples. This intuition dates back to the earliest work in Pattern Recognition,
forming the basis of the condensed nearest neighbor method [15].

The decision border can support feature selection: in [23], a feature selection
algorithm is shown which is based on the evidence that, following a direction
not parallel to the decision border, the classification changes. Then, the direction
normal to the decision border is the most informative one. By considering the
principal components of the decision border, one can decide suitable transforma-
tions of data and the elimination of the less informative features. Unfortunately,
the paper illustrates a method to derive the principal components that is com-
putationally heavy and does not scale well.

The selection of the classifier architecture and the learning algorithm is based
on the geometry of the decision border in the data mining step. For instance it
is known that, if the border turns out to be parallel to the axes, then one can
decide to use decision trees, that perform well on these problems and that have
the advantage of a simple rule extraction. Other kinds of linear borders can
suggest the use of Support Vector Machines (SVM) with linear kernel. Similarly,
closed and convex decision regions would turn the choice towards SVM with
gaussian kernel or Radial Basis Function (RBF) networks, while for open, non
linear decision borders SVM with polynomial kernel or Multi-Layer Perceptron
(MLP) would be preferable. To set the number of layers in MLP it is useful
to know the type of concavity of the decision regions as well as the number
of disconnected regions. One could even envisage a combined method where
different types of architectures are used in different regions of the vector space,
depending on the form of the border in that region. Finally, the initial state of
a learning algorithm can be set in the regions of space near the decision border.

In the elicitation of the classification rule, the analytical representation of
the decision border finds its natural application. It is known that one of the
perceived limits of inductive techniques such as neural networks is their “black-
box” nature: the classification rule is hidden in the structure of the network and a

KDD Support Services Based on Data Semantics 287

human expert has no element to validate it. In the literature, different techniques
have been proposed to extract rules from MLP neural networks and decision
trees. The method described in section 4 defines the basis for the elicitation of
VQ-based classification rules.

3 Generalities on Nearest Neighbor Vector Quantizers

Definition 2. A nearest neighbor Vector Quantizer (VQ) of dimension n and
order M is a function Ω : Rn →M, M = {m1, m2, . . . , mM}, mi ∈ Rn, mi �=
mj, which defines a partition of Rn into M regions V1,V2, . . . ,VM , such that

Vi = {x ∈ Rn : d(x, mi) < d(x, mj), j �= i}, (1)

where d is some distance measure.

M is called the code. It is a finite set of vectors in Rn called code vectors
or reference vectors. The region Vi defined by (1) is called the Voronoi region of
the code vector mi.

Notice that, once the distance has been defined, M defines entirely the map-
ping Ω. If we choose as distance measure the usual squared Euclidean distance

d(x, y) = ‖ x− y ‖2 = (x− y)T (x− y), x, y ∈ Rn, (2)

then it is particularly simple to describe the partition as a function of code
vectors. In practice, we can reduce the definition of the Voronoi region Vi to the
following system of constraints:

Vi :

⎧⎨
⎩
‖ x−mi ‖2<‖ x−mci1 ‖2

...
‖ x−mi ‖2<‖ x−mcil

‖2,

(3)

where Neigh(mi) = {mci1 , . . . , mcil
} ⊂ M is the set of nearest code vectors to

mi. Region borders are defined as the geometric locus of points equidistant from
at least a pair of code vectors. In particular, the region border is a piecewise
linear surface, where each piece of hyperplane (excluding the extreme points)
satisfies with the equal sign exactly one of the constraints in (3). Thus, if l is the
number of constraints, Vi is a polytope with l faces. Figure 3 gives an illustrative
example of a code of order 10 and of the relative Voronoi diagram in R2.

Points satisfying two or more constraints with the equal sign define the ver-
tices of the polytope Vi. Finally, let us notice that each constraint in (3) defines
a half-space of the type

Vi,j = {x ∈ Rn : uT
ij · (x− βij) ≥ 0},

with uij = mi − mj and βij = mj+mi

2 . Each region Vi is thus defined by the

intersection of a finite number of half-spaces, hence it is a regular, convex poly-
tope. It is also simple to see that each code vector mi belongs to the region Vi.

288 C. Diamantini, D. Potena, and M. Panti

Fig. 3. (a) A code and (b) its Voronoi diagram. Si, j is the border between mi and mj .

In fact, it holds ‖ mi −mi ‖2<‖ mi −mj ‖2 for each code vector mj �= mi, then
mi ∈ Vi. Regular VQs of this type are called polytopal VQs.

3.1 Voronoi Diagrams in n-Dimensional Space

In spite of the simple and well known theory illustrated above, few or no software
for the practical calculus of Voronoi diagrams in spaces of general dimensionality
Rn, n > 2 exists (actually, the only one we found, which only approaches our
needs is reported in [7]).

The Region of code vector m1 (0.000,0.000) label 2:
1.000*X(1) + -1.000*X(2) = -1.000 from (-0.000,1.000) to (-1.500,-0.500)
1.000*X(1) + 1.000*X(2) = 1.000 from (-0.000,1.000) to (1.500,-0.500)
0.000*X(1) + 1.000*X(2) = -0.500 from (-1.500,-0.500) to (1.500,-0.500)
The Region of code vector m2 (-1.000,1.000) label 2:
1.000*X(1) + -1.000*X(2) = -1.000 from (-0.000,1.000) to (-1.500,-0.500)
1.000*X(1) + 0.000*X(2) = -0.000 from (-0.000,1.000) to (-0.000,1001.000)
1.000*X(1) + -2.001*X(2) = -0.499 from (-1.500,-0.500) to (-667.059,-333.274)
The Region of code vector m3 (1.000,1.000) label 1:
1.000*X(1) + 1.000*X(2) = 1.000 from (-0.000,1.000) to (1.500,-0.500)
1.000*X(1) + 0.000*X(2) = -0.000 from (-0.000,1.000) to (-0.000,1001.000)
1.000*X(1) + 2.001*X(2) = 0.499 from (1.500,-0.500) to (667.059,-333.274)
The Region of code vector m4 (0.000,-1.000) label 1:
0.000*X(1) + 1.000*X(2) = -0.500 from (-1.500,-0.500) to (1.500,-0.500)
1.000*X(1) + -2.001*X(2) = -0.499 from (-1.500,-0.500) to (-667.059,-333.274)
1.000*X(1) + 2.001*X(2) = 0.499 from (1.500,-0.500) to (667.059,-333.274)

Fig. 4. An example of analytical description of a Voronoi Diagram and its graphical

representation

 (a)

m i

jm m j

i m

S
i,j

(b)

KDD Support Services Based on Data Semantics 289

We implemented such an algorithm, that is available as a web service at
http://babbage.diiga.univpm.it:8080/axis/services/voronoiWrapped. The WSDL
of the service can be downloaded at http://babbage.diiga.univpm.it:8080/axis/-
WSDL/voronoiWSDL.xml. Definitions and technical details are given in Ap-
pendix A.

In Figure 4 a graphical example of a Voronoi diagram in R2 and the corre-
sponding output of the algorithm is given . For each code vector mi the equa-
tions of the pieces of lines and their extremes is reported (the points in the
from . . . to . . . expression). X(i) represents the i-th dimension of the feature
space. Notice the existence of extremes with very big values not comparable
to values of the code vectors. These represent the approximation of “points at
infinite” that are introduced for computational purposes and which are called
fictitious code vectors in the Appendix. Notice that the use of fictitious code
vectors introduces approximation errors in some equation (e.g., the 3rd equation
of m2 should be X(1)-2*X(2)=-0.5).

4 An Approach to Decision Border Characterization

Statistical pattern classification is modeled by considering a pair (x, c) of random
variables with values in Rn × C. The continuous vector x is the observed vector
(or feature vector), while the discrete random variable c ∈ C = {c1, c2, . . . , ck}
is the class the observed vector belongs to. Each class ci is characterized by a
conditional density function px|c(x = x|c = ci), and by an apriori probability
Pc(ci),

∑k
i=1 Pc(ci) = 1. The best theoretical rule to assign a feature vector to

a class is known as the Bayes rule. It reads:

c∗ = argmaxci{Pc(ci) ∗ px|c(x = x|c = ci)}.

This rule produces in fact the minimum misclassification rate. For this reason,
decision borders defined by the Bayes rule are considered the true (Bayes) deci-
sion border for the problem.

The form of the true decision border is generally unknown, since the Bayes
rule is based on the definition of the unknown class conditional distributions. In
the following we describe a method to estimate the form of the true but unknown
decision border. It relies on the Labeled Vector Quantizer (LVQ) architecture
as a classification architecture and on the BVQ algorithm [8] to design an LVQ
approaching the Bayes rule.

Definition 3. A Labeled Vector Quantizer (LVQ) is a pair LV Q =< Ω,L >,
where Ω : Rn →M is a vector quantizer, and L : M→ C is a labeling function,
assigning to each code vector in M a class label.

An LVQ defines a decision rule:

Definition 4. The decision rule associated with a Labeled Vector Quantizer
LV Q =< Ω,L > is:

ΦLV Q : Rn → C, x *→ L(Ω(x)).

290 C. Diamantini, D. Potena, and M. Panti

Notice the nearest neighbor nature of this decision rule: each vector in Rn

is assigned to the same class as its nearest code vector. Thus, decision regions
are defined by the union of Voronoi regions of code vectors with the same label.
Notice also that decision borders are defined only by those hyperplanes Si,j such
that mi and mj have different labels.

The design of an LVQ decision rule approaching the Bayes rule is practically
realized by supervised inductive learning algorithms, based on a set of examples
of known class. Among the learning algorithms for LVQ classifier design, BVQ
turns out to be the one with the best overall performances [8].

In the following we summarize the steps of the proposed method to extract
the analytical description of the decision border. The method is valid, and we
tested it, in generalRn space and for k-class problems. However in the following,
for sake of simplicity and to give a visual support to the reader, the examples
are given considering two-class problems in a two-dimensional space.

Let T = {(x1, l1), . . . , (xN , lN)} be a set of N labeled samples, where xi is
the feature vector and li ∈ {c1, . . . , ck} is its class.

1. BVQ Training: Use the N samples to train an LVQ. In this phase we have
to set up the parameters of the LVQ and BVQ algorithm, that are principally
the number of code vectors, the width of the windows Δ, the learning rate γ
and the number of iterations. The tuning of the BVQ parameters is usually
done experimentally, by trying different n-tuples of parameter values and
evaluating the classification error for each. The total time and effort we put
into the parameter setting depends on the quality of the classifier that we
want to design and, of course, on the difficulty of the classification problem.
The output of this step is the set of code vectors used to approach the Bayes
border.

Decision Border:
1.000*X(1) + 0.000*X(2) = 0.000 from (-0.000,1.000) to (-0.000,1001.000)
1.000*X(1) + 1.000*X(2) = 1.000 from (-0.000,1.000) to (1.500,-0.500)
0.000*X(1) + 1.000*X(2) = -0.500 from (-1.500,-0.500) to (1.500,-0.500)
1.000*X(1) + -2.001*X(2) = -0.499 from (-1.500,-0.500) to (-667.059,-333.274)

Fig. 5. An example of Decision Border equations

KDD Support Services Based on Data Semantics 291

2. Analytical Voronoi Description: Apply the algorithm described in Sec-
tion 3.1 and Appendix A to the trained code vectors, to obtain the equations
of hyperplanes and circumcenters representing the Voronoi border surfaces
and their vertices respectively.

3. Decision border extraction: Starting from the equations of the Voronoi
diagram, obtain the decision border description by deleting all the borders
dividing two regions with the same label. This can be done in practice by
merging the pieces of hyperplane of all the code vectors with the same label,
deleting those appearing twice. The result of this step for the example in
Figure 4 is reported in Figure 5.

5 Analysis

Having the analytical definition of decision borders, one can develop any kind
of geometrical analysis. We hasten to point out that the results of the analysis
depend on the quality of the classifier w.r.t. (1) correctness and (2) simplicity.
Correctness is related to the accuracy in Bayes decision border approximation.
We will show that valid analysis can be carried out, even if the classifier is not
accurately designed. More refined analysis cannot be guaranteed to be valid
unless the classifier is near-optimal. Simplicity of the classifier depends on the
number of constraints used to describe the decision border, and hence indirectly
on the number of code vectors. Of course, following the Occam’s razor principle,
such number should not be greater than the minimum number of constraints
necessary to guarantee a given level of correctness, since each constraint beyond
this number contributes reducing the human understanding of the model. In the
following we will consider different types of analysis drawing attention to these
issues.

5.1 Topological Properties of Regions

One simple analysis is that on the qualitative shape of the curve, that is of
topological properties such as the Connected/Disconnected and the Open/Close
properties of the decision regions. This information is derivable simply from the
analysis of vertices. A decision region is Connected (Disconnected) if, denoted
by V any of its vertices, it is (not) possible, starting from V , to pass along all the
other vertices, moving along the pieces of hyperplanes of the region surface. To
evaluate the connected property of a decision region we can use any algorithm to
evaluate the connection of a graph. To evaluate the open/close property of the
region (or of its sub-regions, if it is disconnected), it is sufficient to evaluate if a
fictitious vertex exists in the set of its vertices. Since this vertex does not really
exist, the region turns out to be unlimited (for instance, Figure 10 shows an
example of two closed decision regions, while Figure 7 shows an example of open
decision region). We illustrate the method for extracting the open and connected
properties by the following simple algorithm:

292 C. Diamantini, D. Potena, and M. Panti

let S be the list of all vertices Vi, i ∈ {1, . . . , M} of the decision regions.
With a little abuse of notation, S[i] will denote the i-th element of the list S,
while |S| will denote the number of elements in S. Let A be the matrix of links
between any pair of vertices, such that A[i, j] = 1 iff S[i] and S[j] both belong
to a piece of hyperplane delimiting the decision region and i �= j. Finally, let C
be an array such that C[t] contains the list of vertices of the region analysed at
the t-th iteration.

1. t = 0;
2. t = t + 1;
3. Set X = S[1] and set l[t] =‘close’;
4. i = 0;
5. While ((i < |S|) and (l[t] =‘close’)) do

(a) i = i + 1;
(b) if S[i] is a fictitious vertex then X = S[i] and l[t] =‘open’;

6. if (X ∈ C[t]) then insert X in C[t];
7. j = 1;
8. While (j ≤ |S|) do

(a) if A[i, j] = 1 then do
i. A[i, j] = 0 and A[j, i] = 0;
ii. X = S[j];
iii. i = j and j = 1;
iv. if (X ∈ C[t]) then insert X in C[t];

(b) else j = j + 1;
9. delete from S vertices in C[t];

10. If S is not empty go to step 2;

If t = 1 the decision region is connected, otherwise it is disconnected and
formed by t sub-regions. The pairs (C[i], l[i]), with i = 1, . . . , t individuate the
t sub-regions and if they are closed or open. For the example shown in Figure 5
the input to the algorithm can be

S[1] = (−0.000, 1.000),
S[2] = (−0.000, 1001.000),
S[3] = (1.500,−0.500),
S[4] = (−1.500,−0.500),
S[5] = (−667.059,−333, 274)

, A =

⎛
⎜⎜⎜⎝

0 1 1 0 0
1 0 0 0 0
1 0 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎠ ,

while C is empty. At the end, the algorithm produces the following structure:
⎛
⎜⎜⎜⎝C[1] =

(−0.000, 1001.000)
(−0.000, 1.000)
(1.500,−0.500)
(−1.500,−0.500)
(−667.059,−333, 274)

, l[1] = ‘open′

⎞
⎟⎟⎟⎠ ,

so we get an open, connected decision region (the grey region in Figure 5). The
other decision region (the white one) is obviously obtained by complement.

For this analysis even rough classifiers allow us to obtain correct deductions.
Figures 6-10 show five classification problems characterized each by a different
topology of the true decision regions. In the figures the thin lines represent
the true Bayes decision borders, while the thick lines are the borders found
without stressing the design of the classifier by the BVQ, that is, by choosing
a uselessly high number of code vectors, by running the BVQ for a limited
number of iterations and without tuning the parameters γ and Δ. We can notice
that the decision borders found by BVQ differ considerably from the true ones,
nevertheless, topological properties are preserved. This is especially evident in
Figures 7, 8 and 10.

KDD Support Services Based on Data Semantics 293

Fig. 6. A problem with a linear decision

border

Fig. 7. A problem with a hyperbolic deci-

sion border

Fig. 8. A problem with a circular decision

border

Fig. 9. The XOR problem

Fig. 10. A problem with a decision border formed by two disconnected circles

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 0 2 4 6 8 10 12 14 16
−2

0

2

4

6

8

10

12

14

16

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

294 C. Diamantini, D. Potena, and M. Panti

5.2 Extraction of Geometrical Properties of Regions

For any (sub)regions, and specially for closed ones, we can extract a number of
geometrical features to refine the regions characterization. These features include
the surface area, volume, principal components ratio, convexity, volume/surface
ratio, position in Rn and so on. Principal component analysis, in the classifica-
tion domain, aims to measure the most informative direction for the classification
task. Following [23], it is quite simple to calculate principal components for the
piecewise linear borders of an LVQ. Convexity of decision regions can be estab-
lished if, for each pair of vertices a, b their convex combination αa + (1 − α)b
belongs to the decision region, or to the decision border, for each 0 ≤ α ≤ 1.
For lack of space, we omit the description of the algorithms to calculate all these
geometrical features.

The precision of most of the geometrical features depends on the quality of
the classifier. Consider for example the convexity property: from Figures 7 and
10, we can deduce that convexity is not easily preserved. Notice however that in
Figures 7 and 10 convexity is not preserved only in limited and local regions of
space, so that in a global analysis they can be ignored. This is true in general:
further elaborations and approximations of a rough classification would allow us
to enhance the quality of the deductions. Notice also that comparison between
regions properties, like the relative dimensions and the relative positions of the
(sub)regions remains valid (see Figure 8, 9 and 10).

6 Case Studies

In this section we show how the knowledge given by the decision border can be
exploited to support the user in the design of classification KDD processes. To
this end, we consider two classification problems, the gaussian signals and the
echocardiogram from the Irvine “UCI Machine Learning Repository” [1].

The former problem is to classify between two bivariate gaussian signals
having the same mean and different covariance matrices. This model describes
the non coherent reception of two equiprobable, noisy, binary modulated signals,
and in the past years it was widely adopted as a benchmark for many recognition
tasks, like feature selection [24] and classification [19]. We set the following values
for means and covariance matrices:

μ1 = μ2 = (0
0), Σ1 = I =

(
1 0
0 1

)
Σ2 = I ∗ 0.01

The Bayes border is a circle centered in the origin of axes with radius around
0.2, Bayes error probability is 2.7%. From this population, a training set TS of
size 100.000 is used to design the classifiers: 50.000 to generate the model and
the leftover instances to test it. First, we apply the proposed approach to extract
a rough analytical description of the decision border. The outcomes are showed
in Figure 11, where the BVQ is trained with 4 code vectors.

The database of the latter classification problem, extracted from the UCI
repository, represents patients who suffered heart attacks at some point in the

KDD Support Services Based on Data Semantics 295

Decision Border:
1.000*X(1) + 0.334*X(2) = 0.302 from (0.42767,-0.37584) to (0.13028,0.51438)
1.000*X(1) + 4.457*X(2) = -1.247 from (0.42767,-0.37584) to (-0.6852,-0.12613)
1.000*X(1) + -1.273*X(2) = -0.525 from (0.13028,0.51438) to (-0.6852,-0.12613)

Fig. 11. The Decision Border equations related to the two bivariate gaussian signals

problem

Decision Border:
-0.981*X(1)+ 0.130*X(2)+ -0.045*X(3)+ -0.092*X(4)+ 0.038*X(5)+
-0.004*X(6)+ -0.060*X(7)+ 0.021*X(8)+ -0.064*X(9) = -0.174

Fig. 12. The Decision Border equations related to echocardiogram database

past. The goal of this problem is to predict whether or not the patient will
survive. The most difficult part of this problem is related to the size of the data
set. In fact, after the data cleaning phase, the database consists of 9 features
plus the class, and it contains only 132 instances. In this case, the analytical
form of the decision border is obtained initializing the BVQ with only 2 code
vectors. The results are shown in Figure 12.

In the following, we show how the knowledge of the decision border helps
the user in the choice of the appropriate classification algorithm, in the data
selection phase and for feature selection.

6.1 Choosing the Data Mining Algorithm

Support Vector Machines is a kernel-based learning methodology introduced by
Vapnik [29] that finds many important applications in the Data Mining field.
Varying the form of the kernel parameter, the algorithm can simulate differ-
ent classifiers, from linear classifiers, to RBF and MLP neural networks. If no
knowledge about the data is given, the different kernels have to be evaluated
extensively, while some knowledge about the border could limit the search to
the most promising ones. To prove this statement, let us consider the bivariate
gaussian signals problem. Analyzing the equations of the decision border we see
that it is a connected closed one (see Figure 11), so we deduce that it is not
convenient to use a linear classifier, but we have to train a classifier by an al-

296 C. Diamantini, D. Potena, and M. Panti

Table 1. Using the decision border characterization for data selection

training instances 50000 5000 2000 1000 500 100

runtime in seconds 87.44 3.38 0.65 0.22 0.07 0.03

number of support vectors 4335 1812 790 520 279 135

Accuracy on test set 97.14% 97.02% 96.95% 95.48% 94.02% 02.54%

gorithm that builds a non-linear decision rule. As a matter of fact, training the
SVM algorithm with RBF kernel, we obtained an accuracy of 97.14% on the
test set, and the training was carried out in 87.44 seconds. On the other hand,
using a linear kernel, the same implementation of the algorithm runs on the same
machine in 13683.82 seconds with an accuracy on the test set of 49.90%.

6.2 Data Selection

Data reduction techniques are exploited in combination with not scalable al-
gorithms, that is algorithms whose high cost makes them unsuitable for the
management of large amounts of data. The major information for the classifi-
cation task is concentrated in the instances close to the decision border. Thus,
data reduction can be performed by eliminating those samples falling far from
the decision border, as less informative samples. This intuition dates back to the
earliest work in Pattern Recognition, forming the basis of the condensed nearest
neighbor method [15]. In the following, we show that SVM could also gain from
the application of this data reduction technique. To this end, we consider again
the bivariate gaussian signals problem, and we build six different experiments
by training a SVM with a RBF kernel on the whole training set and on the
first 100, 500, 1.000, 2.000 and 5.000 samples falling close to the decision border
found by the BVQ algorithm. The results are shown in Table 1. It is noted that
reducing the number of training instances from 50.000 to 2.000, the accuracy
on the test set does not substantially change (it varies from 97.14% to 96.95%).
On the other hand, the number of support vectors is reduced from 4.335 to 790,
considerably reducing the model complexity.

Reduction in model complexity has a great impact on the training time,
as shown in the Table, and also in the time needed to classify a new sample.
Furthermore, the simpler the model is, the simpler it is to try to validate it and
to extract symbolic rules from it.

6.3 Feature Selection

The echocardiogram database allows us to show how the characterization of
the decision border provides information about the most informative features.
Starting from the equations of the decision border (see Figure 12), we are able to
extract the weight of any feature with respect to its contribution to classification
accuracy. According to the EDBFE method [23], these weights can be obtained
simply, by analyzing the vector normal to the decision border, that represents
the most informative direction. Table 2 reports the feature information weights

KDD Support Services Based on Data Semantics 297

Table 2. Weight of the features, of echocardiogram database, with respect to the

classification task. Acc. W. is accumulation of weights.

Feature Weight (%) Acc. W.

1 survival 0.684 0.684
2 age-at-heart-attack 0.090 0.775
4 fractional-shortening 0.064 0.839
9 mult 0.045 0.884
7 wall-motion-score 0.042 0.925
3 pericardial-effusion 0.031 0.956
5 epss 0.026 0.983
8 wall-motion-index 0.015 0.997
6 lvdd 0.003 1.000

in decreasing order, together with the cumulative weights for all the features.
Notice that, even with the simple linear border found by the BVQ, it is possi-
ble to derive results that are consistent with the domain knowledge: the most
important feature to predict whether or not the patient will survive is the num-
ber of months that the patient survived immediately after the attack (the first
period is clearly the most critical), while the second one is the age at which the
heart attack occurred. This can be observed also empirically, since experiments
performed show that training a classifier on the whole vector space and on the
space formed by the ‘survival’ and ‘age-at-heart-attack’ features only, leads to
the same classification accuracy.

Note that the EDBFE method extracts the information analyzing the whole
data set, thus requiring a lot of computational resources, while extracting this
information from the analytical form of the decision border is a straightforward
and cheap operation.

The knowledge derived from this analysis can be useful for itself, giving
information as to which variables mainly influence the problem, or it can be
exploited to train a classifier on a limited set of features, thus reducing the so
called curse of dimensionality.

7 Semantic Annotation of Data on a Net

Business and scientific organizations can have numerous advantages in the defi-
nition of distributed KDD processes over a network: they can share data, algo-
rithms and computational resources, as well as methodological practices. Also
isolated users can exploit the network environment to retrieve and reuse useful
algorithms, tools, data and discovered models.

In this perspective, a number of proposals have been made, to define effective
infrastructures for KDD process design over a net. Data and Knowledge Grids
have been defined as a means to support high-performance distributed data min-
ing in federated environments [4,6]. The service oriented paradigm is the natural
extension to open environments [28,13,9,22,26,21]. This calls for languages and

298 C. Diamantini, D. Potena, and M. Panti

standards to describe resources, in order to facilitate their discovery, compre-
hension, exploitation, interoperability. For instance, Grossman introduced the
Predictive Model Markup Language (PMML) [14] that, in its latest version,
supports the description of a classification model, as well as of data transfor-
mation activities that precedes model induction in KDD. For a survey on the
development of data mining related standards see [12].

The annotation of data with semantic information about the decision border
can leverage the development of a class of services of particular interest in the
field of KDD, that of high-level services to give support to the users in the map-
ping between his business goal and the Data Mining tasks, in the choice, retrieval
and correct use of techniques and tools, in their efficient composition and in the
understanding of the final results. In fact, the sharing of such data, together with
adopted techniques and experimental results allow us to accumulate knowledge
to build the knowledge-base of an intelligent support system. In the envisaged
scenario, such knowledge-base manages the relationships among three different
registries, representing information about the business, the data mining task and
the data (Figure 13). In particular, for any performed classification experiment
the knowledge-base registry stores information about the business domain, the
business goal, the dataminer and his annotations, the data structure and the
feature semantics, the properties of the decision border and the relations with
both the methods, the algorithms and the tools used for the classification task,
in accordance with a data mining ontology. The information on the decision bor-
der represents its analytical form, its geometrical and topological properties and
the accuracy of the BVQ classifier used for the decision border definition. The
accuracy of describing the decision border can be measured by the classification
error, so if it turns out to be close to the Bayes classification error, then we can
be quite confident that the decision border found is close to the Bayes border.
Furthermore, the knowledge-base registry contains information about the quality
of the experiment, in terms of performances of the classification algorithm: error

Fig. 13. The knowledge-base registry and the intelligent services of an KDD support

system

KDD Support Services Based on Data Semantics 299

probability, precision, recall, dimension of the inducted model, computation time
and used memory. The accuracy of proposed method, the dataminer reliability
and the performances of the algorithm are a measurement of the quality of the
data semantic annotations. This information can be available over a network
of virtual organizations as results of a single classification process or as similar
distributed knowledge-base registries. Then, Meta Learning Service can collect
and analyze this information to find similarities between data, by clustering the
input datasets on the basis of their decision border characteristics. By map-
ping a cluster to the classification methods and algorithms used for the datasets
belonging to the cluster, the meta-learning service can establish a relationship
between data characteristics and algorithms performances. The results of the
analysis performed by this service is also stored in the knowledge-base reposi-
tory. In turn, this information can be exploited by another class of intelligent
services, that of Case-Based Support Services which, querying the knowledge-
base repository for Meta Learning information, can return the set of algorithms,
or the typical parameter setting for a given algorithm, that have demonstrated
the best performances on the data cluster similar in characteristics to a given
dataset.

8 Conclusions

This work investigated the utility to exploit data semantics in the development
of KDD processes. We considered a special kind of semantics for classification
problems, given by the decision border. We showed that it is possible to derive
some knowledge about the characteristics of the decision border and decision
regions of a classification problem, starting from the geometrical properties of
Vector Quantizers. Then, we showed that this knowledge can effectively help the
user to take decisions and to limit the efforts in the implementation of inductive
classification methodologies. We also discussed the introduction of intelligent
services to collect, to analyze and to manage the semantics of data distributed
over a network of virtual organizations.

An important issue related with this approach is the accuracy of the decision
border needed for the different applications. By the term knowledge, it is com-
monly meant “a set of assertions about a phenomenon which are true to some
extent and which are useful to take decisions”. The set of true assertions repre-
sents a model for the phenomenon. Different models for the same phenomenon
can exist, which are valid as long as they are applied to take certain kinds of
decisions. Consider for instance the Earth model given by the most common
cartography. This model approximates pieces of the globe as it was flat. This is
a useful model to trace the shortest route between two points which are not too
far from each other, however in an Atlantic crossing it would introduce a non
negligible error, and the Earth sphericity should be taken into account. A sim-
ilar situation applies to our approach. The experiments reported showed that,
in an evidence-based methodology to support the user in a classification KDD
process, an accurate model of the decision border is not needed to understand

300 C. Diamantini, D. Potena, and M. Panti

and to pre-process the input data. We obtained interesting experimental results
for data selection, feature reduction and for the selection of the kernel parameter
of the SVM algorithm even with a rough model of the classification problem.
However, it is clear that, at least for the definition of the correct classification
rule an accurate decision border is needed. Also, in order to build up a valid
knowledge-based registry, the decision border description should guarantee an
good accuracy. We plan to deeply analyze the issue of decision border accuracy
in future works.

Acknowledgements

We thanks the anonymous reviewers that helped with their suggestions to im-
prove the final quality of this manuscript.

This work is dedicated to the memory of our dear co-author Maurizio Panti,
who passed away during the last revision of the paper. His vision of semantics
in the KDD field deeply inspired and guided our research.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
2. Brazdil, P., Soares, C. and Costa, J. Ranking Learning Algorithms: Using IBL and

Meta-Learning on Accuracy and Time Results. Machine Learning, 50(3):251–277,
2003.

3. Cannataro, M. and Comito, C. A Data Mining Ontology for Grid Programming. In
Proc. 1st Work. on Semantics in Peer-to-Peer and Grid Computing, pages 119–130,
2003.

4. Cannataro, M. and Talia, D. The Knowledge Grid. Comm. of the ACM, 46(1):89–
93, Jan. 2003.

5. Cespivova, H., Rauch, J., Svatek, V., Kejkula, M. and Tomeckova, M. Roles of
Medical Ontologies in Association Mining CRISP-DM Cycle. In ECML/PKDD
Workshop on Knowledge Discovery and Ontologies, pages 1–12, Pisa, Italy, 2004.

6. Chervenak, A., Foster, I., Kesselman, C. and Tuecke, S. Protocols and Services for
Distributed Data-Intensive Science. In Proc. Advanced Computing and Analysis
Techniques in Physics (ACAT2000), pages 161–163, 2000.

7. Clarkson, K. A program for convex hulls. http://cm.bell-labs.com/netlib/voronoi
/hull.html.

8. Diamantini, C. and Spalvieri, A. Quantizing for Minimum Average Misclassifica-
tion Risk. IEEE Trans. on Neural Networks, 9(1):174–182, Jan. 1998.

9. Diamantini, C., Potena, D. and Panti, M. Developing an Open Knowledge Dis-
covery Support System for a Network Environment. In Proc. of the 2005 Inter-
national Symposium on Collaborative Technologies and Systems, page to appear,
Saint Louis, Missouri, USA, May 15-19 2005.

10. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. Advances in
Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

11. Fermandez, C., Martinez, J.F., Wasilewska, A., Hadjimichael, M. and Menasalvas,
E. Data Mining - a Semantic Model. In IEEE International Conference on Fuzzy
Systems, volume 2, pages 938–943, May 2002.

KDD Support Services Based on Data Semantics 301

12. Robert Grossman, editor. Proc. of the Second Annual ACM KDD Workshop on
Data Mining Standards, Services and Platforms, Seattle, WA, Aug. 2004.

13. Grossman, R. and Mazzucco, M. DataSpace: a Data Web for the Exploratory Anal-
ysis and Mining of Data. IEEE Computing in Science and Engineering, 4(4):44–51,
July-Aug. 2002.

14. Grossman, R., Hornik, M. and Meyer, G. Emerging Standards and Interfaces in
Data Mining. In Nong Ye, editor, Handbook of Data Mining. Kluwer Ac. Pub.,
Apr. 2003.

15. Hart, P. E. The Condensed Nearest Neighbor Rule. IEEE Trans. on Information
Theory, 14:515–516, 1968.

16. Hotho, A., Staab, S. and Stumme, G. Ontologies Improve Text Document Clus-
tering. In IEEE International Conference on Data Mining, pages 541–544, Nov.
2003.

17. Kalousis, A. and Hilario, M. Model Selection via Meta-Learning. Int. Journal on
Artificial Intelligence Tools, 10(4), 2001.

18. Kargupta, H., Joshi, A., Sivakumar, K. and Yesha, Y. Data Mining, Next Gener-
ation Challenges and Future Directions. AAAI/MIT Press, 2004.

19. Kohonen, T., Barna, G. and Chrisley, R. Statistical Pattern Recognition With
Neural Networks: Benchmarking Studies. In IEEE International Conference on
Neural Networks, pages 61–68, San Diego CA, 24-27 Jul 1998.

20. Kotasek, P. and Zendulka, J. An XML Framework Proposal for Knowledge Discov-
ery in Databases. In European Conference on Principles and Practice of Knowledge
Discovery in Databases, Workshop on Knowledge Management: Theory and Appli-
cations, pages 143–156, Lyon, France, 2000.

21. Krishnaswamy, S., Zaslasvky, A., and Loke, S, W. Internet Delivery of Distributed
Data Mining Services: Architectures, Issues and Prospects. In V.K. Murthy and
N. Shi, editors, Architectural Issues of Web-enabled Electronic Business, chapter 7,
pages 113–127. Idea Group Publishing, 2003.

22. Kumar, A. Kantardzic, M., Ramaswamy, P. and Sadeghian, P. An Extensible
Service Oriented Distributed Data Mining Framework. In Proc. IEEE/ACM Intl.
Conf. on Machine Learning and Applications, Louisville, KY, USA, 16-18 Dec.
2004.

23. Lee, C. and Landgrebe, D.A. Feature Extraction Based on Decision Boundaries.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):288–400, April
1993.

24. Morgera, S.D. and Datta , L. Towards a Fundamental Theory of Optimal Feature
Selection: Part I. IEEE Trans. on Pattern Analysis and Machine Intelligence,
6(5):601–616, Sept. 1984.

25. Phillips, J. and Buchanan, B.G. Ontology-Guided Knowledge Discovery in
Databases. In 1st ACM Int. Conf. on Knowledge Capture, pages 123–130, Vic-
toria, Canada, October 2001.

26. Sarawagi, S. and Nagaralu, S.H. Data Mining Models as Services on the Internet.
ACM SIGKDD Explorations, 2(1):24–28, June 2000.

27. Shearer, C. The CRISP-DM Model: The new Blueprint for Data Mining. Jour. of
Data Warehousing, 5(4), Fall 2000.

28. Talia, D. The Open Grid Services Architecture: Where the Grid Meets the Web.
IEEE Internet Computing, 6(6):67–71, Nov/Dec 2002.

29. V. Vapnik. Statistical Learning Theory. J. Wiley and Sons, New York, 1998.

302 C. Diamantini, D. Potena, and M. Panti

30. Varde, A., Rundensteiner, E., Ruiz, C., Maniruzzaman, M. and Sisson, R. Data
Mining Over Graphical Results of Experiments With Domain Semantics. In ACM
2nd Internationa Conference on Intelligent Computing and Information Systems,
Cairo, Egypt, 5-7 March 2005.

31. Verschelde, J., Casella Dos Santos, M., Deray, T., Smith, B. and Ceusters, W.
Ontology-Assisted Database Integration to Support Natural Language Processing
and Biomedical Data Mining. Journal of Integrative Bioinformatics, Jan. 2004.

32. Wang, B., McKay, R., Abbass, H. and Barlow, M. A Comparative Study for
Domain Ontology Guided Feature Extraction. In 26th Australasian Computer
Science Conference, pages 69–78, Adelaide, Australia, 2003.

33. Yuhua Li and Zhengding Lu. Ontology-Based Universal Knowledge Grid: Enabling
Knowledge Discovery and Integration on the Grid. In IEEE International Confer-
ence on Services Computing, pages 557–560, Sept. 2004.

A Algorithm for the Calculus of Voronoi Diagrams

The Appendix illustrates the algorithm for the analytical description of a Voronoi
diagram, starting from the set of code vectors in general dimensional spaces Rn.
The algorithm is based on the notion of Delaunay triangulation.

Definition A-1. Given a set of points S in R2, the convex hull of S is the
smallest convex set in R2 containing S.

Definition A-2. Given a set of points S in R2, and its convex hull H, the
Delaunay triangulation of S is defined as the the unique triangulation of H such
that the points in S are the vertices of the triangles, and no point of S falls inside
the triangle’s circumcircle.

The definition of Delaunay triangulation can be extended to any space Rn. In
this case, it is also called Complex of Delaunay, and triangles are called simplices.
The circumscribing spheres are called circospheres, and their centers are named
circumcenters.

The following algorithm, starting from the Complex of Delaunay, allows to
calculate the Voronoi diagram of the convex hull of a given set S.

Let be given the set S = S1 ∪ S2, where S1 = {m1, m2, . . . , mM} ⊆ Rn and
S2 = {mM+1, mM+2, . . . , mM+2n} ⊆ Rn, where the elements of S2 are the ver-
tices of an hypercube Φ, such that mi ∈ Φ and the side of Φ +‖ mi − mj ‖2,
∀i, j ∈ [1, M].

1. Calculate all the hyperplanes

Si,j :‖ x−mi ‖2=‖ x−mj ‖2, i, j = 1, . . . , M

2. Extract all the
(
M+2n

n+1

)
permutations of n + 1 points belonging to S1;

1 Notice that n + 1 points in Rn univocally define a simplex.

KDD Support Services Based on Data Semantics 303

3. For each permutation Pi = {mPi1 , . . . , mPin+1}, if its elements satisfy the
definition A-2, calculate the circumcenter CPi and the radius rPi of the cir-
cosphere. Let H be the number of different circospheres found;

4. For each point mi ∈ S:
(a) The vertices of the Voronoi region Vi are all the circumcenters Ch,

h = 1, . . . , H, such that: ‖ Ch −mi ‖2= rh
2;

(b) Extract all the
(
H
n

)
permutations of n vertices of Vi; 2

(c) For each permutation Qi = {CQi1 , . . . , CQin}, calculate the hyperplane
including the points CQi1 , . . . , CQin . If this hyperplane belongs to the set
of hyperplanes generated in step 1, this is a piece of the border of the Vi

region, that is bounded by the circumcenters in Qi.

Notice that we define the set S of input points as the union of two sets: S1,
which represents the code vectors of the VQ we want calculate the Voronoi dia-
gram of, and S2, which represents the 2n vertices of a hypercube containing the
real code vectors and having the side much wider than the maximal dimension of
the convex hull of S1. These points represent “points at infinite” and are named
fictitious code vectors. In this way, the convex hull of S is an expansion of the
convex hull of S1 and the outcome diagram contains all the Voronoi borders of
S1. However, by introducing S2 we get also fictitious circumcenters and fictitious
hyperplanes. It is not difficult to individuate and eliminate fictitious circumcen-
ters and hyperplanes: the former are represented by values which are closer to
the values of fictitious code vectors than to real code vectors. The latter are
identified as the hyperplanes separating the Voronoi regions of two code vectors
at least on of which is a fictitious code vector. Finally, notice that the result is
affected by an error which depends on the distance between the elements of S2

and S1. For these reasons, it is important that fictitious code vectors are chosen
to be very far from the real code vectors.

2 The choice of the set S guarantees that n such circumcenters always exist.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 304 – 340, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrating the Two Main Inference Modes of NKRL,
Transformations and Hypotheses

Gian Piero Zarri

LaLICC, Université Paris4-Sorbonne, Maison de la recherche, 28 rue Serpente,
75006 Paris, France

gpzarri@paris4.sorbonne.fr

Abstract. An application of NKRL (Narrative Knowledge Representation Lan-
guage) techniques on terrorism documents supplied by the Greek Ministry of
Defence (MoD) has been carried out in the context of the IST Parmenides pro-
ject; this application has required implementing the integration between the two
main inferencing modes of NKRL, ‘hypotheses’ and ‘transformations’. ‘Hy-
pothesis rules’ allow retrieving automatically from an NKRL knowledge base
the information that can supply a context or a causal explanation for some
known event. ‘Transformation rules’ facilitate the recovery of information from
the base by ‘adapting’ (transforming) query/queries that failed to the real con-
tents of this base. Integrating the two classes of rules means using the transfor-
mations to automatically modify the pre-defined reasoning steps of a hypothesis
to build up more flexible and complete ‘explanation’ scenarios.

1 Introduction

According to the paper “Countering Terrorism Through Information Technology” in
the CACM Issue on Homeland Security of March 2004, information technologies that
are considered as important for counterterrorism include, amongst other things, “…
categorize [meaning and key concepts] via an information model (taxonomy, ontol-
ogy) [and] cluster documents with similar content … index, store, retrieve, extract,
integrate, analyse, aggregate, display and distribute semantically enhanced informa-
tion from a wide variety of sources … provide an overall view of the different topics
related to the request, along with the ability to visualize the semantic links relating the
various items of information to each other … use Semantic Web, associative memory,
and related technologies to model and make explicit … an analyst's personal prefer-
ences … and [the] tacit understanding of a problem domain ” [1: 39]. It seems then
reasonable to assume that the faculties of NKRL, the Narrative Knowledge Represen-
tation Language, of representing in-depth and in a computer-exploitable way the se-
mantic properties of complex ‘narrative documents’ (in the widest meaning of these
words), of associating automatically disjoint semantic information, of representing
faithfully and efficiently multifaceted (and sometimes contradictory) strategies of
search and inferencing, see [2, 3, 4], could make it a good candidate for exploiting in
an intelligent way terrorism information.

An in-depth experiment concerning the use of the inferencing capabilities of
NKRL on a corpus of news supplied by the Greek Ministry of Defence (MoD) and

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 305

related to terrorism in Philippines between 1993 and 2000 has been carried out in the
context of the EC-supported Parmenides project (IST 2001-39023), see, e.g., [5]. To
get the best from the modelling capabilities of NKRL, this experiment has required
the integration of the two main modalities of inferencing of NKRL, ‘hypotheses’ and
‘transformations’, see below Section 2. ‘Transformation rules’ try to automatically
replace some retrieval queries that failed with one or more different queries that are
not strictly ‘equivalent’ but only ‘semantically close’ to the original one. The queries
– called ‘search patterns’ according to the NKRL technical jargon – are represented in
NKRL terms; they operate by unification/filtering on the contents of a knowledge
base formed by the NKRL representations of the ‘semantic content’ (the meaning) of
multimedia original documents. ‘Hypothesis rules’ allow building up causal-like
explications of given events according to pre-defined reasoning schemata – when
these reasoning schemata are activated by an inference engine, they are converted into
search patterns that try to find an unification with the contents of the base. Integrating
the two inferencing modes corresponds to allow the ‘transformations’ to modify in an
unpredictable way the reasoning steps to be executed within a ‘hypothesis’ context.
This is equivalent to ‘break’ the predefined scenarios proper to the hypothesis rules
and to augment then the possibility of discovering ‘implicit information’ within the
knowledge base – or, in terms of the CACM paper mentioned before, to increase the
possibility of automatically “visualiz(ing) the semantic links relating the various items
of information to each other”.

In this paper, we recall firstly, in Section 2, the main principles underpinning
NKRL and, in particular, the functioning of its inference engine(s). We will then
illustrate, in Section 3, the theoretical problems that the integration implies – e.g., that
of finding a correspondence between the hypothesis and transformation variables in
an ‘integrated’ context – and the solutions adopted. Section 4 will illustrate briefly
how these solutions have been practically implemented. Section 5 will deal with fu-
ture work; Section 6 will make some comparison with related research. Section 7, a
short Conclusion, will end the paper. Many of the examples used in the paper for
illustration purpose will refer to the MoD corpus. Using these examples does not
mean that the underlying assumptions are shared or supported by the author of the
paper or the editor of JoDS. Neither the author, not the editor, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy or
completeness of such information.

2 NKRL and the NKRL Inference Techniques

2.1 General Information About NKRL

NKRL innovates with respect to the current ontological paradigms, both the ‘tradi-
tional’ ones – see, e.g., [6] – and those inspired by the Semantic Web research – see
[7, 8] – by adding to the usual ontologies of concepts an ‘ontology of events’, i.e., a
new sort of hierarchical organization where the nodes correspond to n-ary structures
called ‘templates’. The term ‘event’ is taken here in its more general meaning, cover-
ing also strictly related notions like fact, action, state, situation etc., see [3]. In the
NKRL environment, the ‘ontology of concepts’ is called HClass (hierarchy of

306 G.P. Zarri

classes): HClass is not fundamentally different from one of the ‘traditional’ ontologies
that can be built up by using tools in the Protégé style, see again [6]. The ‘ontology of
events’ – HTemp, hierarchy of templates – is, on the contrary, basically different from
classical ontologies; the two hierarchies, HClass and HTemp, operate in a strictly
integrated way in an NKRL context. A partial representation of HClass is given in
Figure 1; a full description is given in [9]. See [2] for a discussion about concepts like
non_sortal_concept (the specialisations of this concept, i.e., its subsumed
concepts, cannot be endowed with direct instances), sortal_concept or sub-
stance_. Figure 2 represents part of the Produce: branch of HTemp, see Table
1a below for details about the ‘internal’ structure of templates. Both HClass and
HTemp are the ‘pragmatic’ result of many years of successful experiments in dealing
with complex narrative information by using high-level conceptual tools.

Fig. 1. Partial representation of HClass, the ‘traditional’ ontology of concepts

Instead of using the traditional object (class, concept) – attribute – value organiza-
tion, templates are generated from the association of quadruples connecting together
the symbolic name of the template, a predicate, and the arguments of the predicate
introduced by named relations, the roles. The different quadruples making up a given
template have in common the ‘name’ and ‘predicate’ components. If we denote then
with Li the generic symbolic label identifying a specific template, with Pj the predi-

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 307

cate, with Rk a generic role and with ak the corresponding generic argument, the
NKRL core data structure for templates has the following general format:

 (Li (Pj (R1 a1) (R2 a2) … (Rn an))) . (1)

Predicates pertain to the set {BEHAVE, EXIST, EXPERIENCE, MOVE, OWN,
PRODUCE, RECEIVE}, and roles to the set {SUBJ(ect), OBJ(ect),
SOURCE, BEN(e)F(iciary), MODAL(ity), TOPIC, CONTEXT}; predi-
cates and roles are then ‘primitives’. An argument ak of the predicate denotes indi-
rectly through a ‘variable’ (see below) either a simple ‘concept’ (according to the
traditional, ‘ontological’ meaning of this word) or a structured association (‘expan-
sion’) of several concepts. In both cases, the concepts can only be chosen among
those included in the HClass hierarchy; this fact, linked with the ‘primitive’ character
of predicates and roles, allows to reduce considerably the potential combinatorial
explosion associated with formulas like (1).

Fig. 2. Partial representation of the PRODUCE branch of HTemp, the ‘ontology of events’

Templates represent formally generic classes of elementary events like “move a
physical object”, “be present in a place”, “produce a service”, “send/receive a message”,
“build up an Internet site”, etc. – for additional details and a full description of HTemp,
see again [9]. When a particular event pertaining to one of these general classes must be
represented, the corresponding template is ‘instantiated’ to produce what, in the NKRL's

308 G.P. Zarri

jargon, is called a ‘predicative occurrence’. To represent a simple narrative – extracted
from one of the new stories of the MoD corpus – like: “On November 20, 1999, in an
unspecified village, an armed group of people has kidnapped Robustiniano Hablo”, we
must then select firstly in the HTemp hierarchy the template corresponding to ‘execu-
tion of violent actions’, see Figure 2 and Table 1a below. This template is a specializa-
tion (as documented by the ‘father’ code in Table 1a) of the particular PRODUCE tem-
plate corresponding to “perform some task or activity”.

As it appears from Table 1a, the arguments of the predicate (the ak terms in (1)) are
represented in practice by variables with associated constraints – which are expressed as
HClass concepts or combinations of HClass concepts. When deriving a predicative
occurrence (an instance of a template) like mod3.c5 in Table 1b, the role fillers in this
occurrence must conform to the constraints of the father-template. For example, in this
occurrence, ROBUSTINIANO_HABLO (the ‘BEN(e)F(iciary)’ of the action of
kidnapping) and INDIVIDUAL_PERSON_20 (the unknown ‘SUBJECT’, actor, initia-
tor etc. of this action) are both ‘individuals’, instances of the HClass concept indi-
vidual_person: this last is, in turn, a specialization of hu-
man_being_or_social_body, see, in Table 1a, the constraint on the variables
var1 and var6. kidnapping_ is a concept, specialization of violence_, see
var3, etc. Throughout this paper, we will use small letters to represent a concept_,
capital letters to represent an INDIVIDUAL_.

The constituents (as SOURCE in Table 1a) included in square brackets are optional.
A ‘conceptual label’ like mod3.c5 is the symbolic name used to identify the NKRL
code corresponding to a specific predicative occurrence; see [10: Appendix B] for
details about the representation of NKRL data structures onto ORACLE databases. The
first component of this ‘pointed’ notation identifies the original document represented
into NKRL format, in this case, the third news story of the MoD corpus. The second
component, c5, tells us that the corresponding (predicative) occurrence is the fifth
within the set of predicative and binding (see below) occurrences that represent to-
gether the NKRL ‘image’ of the original document. This complete image is called a
‘conceptual annotation’ of the document in the NKRL’s jargon.

The ‘attributive operator’, SPECIF(ication), is one of the four operators that
make up the AECS sub-language, used for the construction of ‘structured arguments’
(‘complex fillers’ or ‘expansions’); apart from SPECIF(ication) = S, AECS
includes also the disjunctive operator, ALTERN(ative) = A, the distributive opera-
tor, ENUM(eration) = E, and the collective operator, COORD(ination) = C.
The interweaving of the four operators within an expansion is controlled by the so-
called ‘precedence rule’, see [2, 4]. The SPECIF lists, with syntax (SPECIF ei p1
… pn), are used to represent the properties or attributes that can be asserted about the

first element ei, concept or individual, of the list – e.g., in the SUBJ filler of
mod3.c5, Table 1b, the attributes weapon_wearing and (SPECIF cardi-
nality_ several_)) are both associated with INDIVIDUAL_PERSON_20.
weapon_wearing is a specialization of the dressing_attribute concept of
HClass, i.e., via the generalizations dressing_attribute and physi-
cal_aspect_attribute, it is also a specialization of animate_entity_

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 309

property. (SPECIF cardinality_ several_)), which is in turn a
SPECIF lists, is the standard way of representing the ‘generic plurality’ in NKRL,
see [2]. several_ – a concept of the logical_quantifier branch of HClass –
‘gives details’ about cardinality_, a quantifying_property, etc.

Table 1. Building up and querying predicative occurrences

 a)
name: Produce:Violence
father: Produce:PerformTask/Activity
position: 6.35
NL description: 'Execution of Violent Actions on the Filler of the
BEN(e)F(iciary) Role'

PRODUCE SUBJ var1: [(var2)]
 OBJ var3
 [SOURCE var4: [(var5)]]
 BENF var6: [(var7)]
 [MODAL var8]
 [TOPIC var9]
 [CONTEXT var10]
 {[modulators], abs}

 var1 = <human_being_or_social_body>
 var3 = <violence_>
 var4 = <human_being_or_social_body>
 var6 = <human_being_or_social_body>
 var8 = <criminality/violence_related_tool> ⏐ <machine_tool> ⏐
 <general_characterising_property> ⏐ <violence_> ⏐ <weapon_> ⏐
 <small_portable_equipment>
 var9 = <h_class>
 var10 = <situation_> ⏐ <spatio/temporal_relationship> ⏐
 <symbolic_label>
 var2, var5, var7 = <geographical_location>

 b)
 mod3.c5) PRODUCE SUBJ (SPECIF INDIVIDUAL_PERSON_20 weapon_wearing
 (SPECIF cardinality_ several_)): (VILLAGE_1)
 OBJ kidnapping_
 BENF ROBUSTINIANO_HABLO
 CONTEXT #mod3.c6

 date-1: 20/11/1999
 date-2:

 Produce:Violence (6.35)
 On November 20, 1999, in an unspecified village (VILLAGE_1), an armed group of people
 has kidnapped Robustiniano Hablo.

c)

 PRODUCE
 SUBJ : human_being :
 OBJ : violence_
 BENF : human_being :
 {}
 date1 : 1/1/1999
 date2 : 31/12/1999
 There is any information in the system concerning violence activities during 1999?

310 G.P. Zarri

The ‘location attributes’, represented in the predicative occurrences as lists, are
linked with the arguments of the predicate by using the colon operator, ‘:’, see the
individual VILLAGE_1 in Table 1b. In the occurrences, the two operators date-1,
date-2 materialize the temporal interval normally associated with narrative events,
see again Table 1b; a detailed description of the methodology for representing tempo-
ral data in NKRL can be found in [3].

Until now, we have evoked the NKRL solutions to the problem of representing
elementary (simple) events. To deal now with those ‘connectivity phenomena’ that
arise when several elementary events are connected through causality, goal, indirect
speech, co-ordination and subordination etc. links, the basic NKRL knowledge repre-
sentation tools have been complemented by more complex mechanisms that make use
of second order structures created through reification of the conceptual labels of the
predicative occurrences, see [2, 3] for further details. A simple example concerns the
filler of the CONTEXT role in the occurrence mod3.c5 of Table 1b: in this case
(‘completive construction’), the ‘context’ of the kidnapping is supplied by a whole
predicative occurrence, mod3.c6, telling us that the kidnapping happened when
Robustiniano Hablo was on his way home with his father. The code ‘#’ indicates to
the NKRL interpreter that the associated item is a conceptual label and not a concept
or individual.

More complex examples of second order constructions are the ‘binding occur-
rences’, i.e., NKRL structures consisting of lists of symbolic labels of predicative
occurrences; the lists are differentiated making use of specific binding operators like
GOAL, COND(ition) and CAUSE. Let us suppose we would now state that: “…an
armed group of people has kidnapped Robustiniano Hablo in order to ask his family
for a ransom”, where the new elementary event: “the unknown individuals will ask
for a ransom” corresponds to a new predicative occurrence, e.g., mod3.c7. To repre-
sent this situation completely, see Table 2, we must add to the occurrences that make
up the ‘conceptual annotation’ for the Robustiniano Hablo’s story a new binding
occurrence, e.g., mod3.c8, to link together the conceptual labels mod3.c5 (corre-
sponding to the kidnapping predicative occurrence, see also Table1b) and mod3.c7
(corresponding to the new predicative occurrence describing the intended result).
mod3.c8 will have then the form: “mod3.c8)(GOAL mod3.c5 mod3.c7)”,
see Table 2. The meaning of mod3.c8 can be paraphrased as: “the activity described
in mod3.c5 is focalised towards (GOAL) the realization of mod3.c7”. We can note
that (see again [3] for more details):

 The second predicative occurrence mentioned in a GOAL binding structure (the
second argument of a GOAL operator, i.e., the intended result), which corre-
sponds to an elementary events that will happen ‘in the future’ with respect to
the event described by the first predicative occurrence (the first argument of
GOAL, i.e., the action), is systematically marked as ‘hypothetical’ by the pres-
ence of an uncertainty validity attribute, code ‘*’, see occurrence mod3.c7 in
Table 2.

 The (unknown) date of the (possible) ransom request is simulated by a ‘fork’ in
the first date field (date-1) of mod3.c7, where the first term of the fork is
the kidnapping date, and the second (reconstructed, i.e., not specifically attested

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 311

in the original documents, see the ‘parenthesis’ codes) corresponds to a month
after. The meaning of the global date-1 filler amounts then to say that the re-
quest will be (possibly) made at an unknown date included within this interval.
Note that the insertion of (20/12/1999) in the second date field (date-2)
of mod3.c7 would have led to this interpretation of mod3.c7, see [3]: the
(possible) action of sending the ransom’s request to the Robustiniano Hablo’s
family will take a full month.

Table 2. Predicative and binding occurrences

mod3.c8) (GOAL mod3.c5 mod3.c7)

The information conveyed by mod3.c8 says that the aim of the ‘behaviour’ related in
 mod3.c5 is to arrive at the situation described in mod3.c7.

mod3.c5) PRODUCE SUBJ (SPECIF INDIVIDUAL_PERSON_20 weapon_wearing
 (SPECIF cardinality_ several_)): (VILLAGE_1)
 OBJ kidnapping_
 BENF ROBUSTINIANO_HABLO
 CONTEXT #mod3.c6
 date-1: 20/11/1999
 date-2:

Produce:Violence (6.35)

On November 20, 1999, in an unspecified village (VILLAGE_1), an armed group of people
has kidnapped Robustiniano Hablo.

*mod3.c7) MOVE SUBJ (SPECIF INDIVIDUAL_PERSON_20 (SPECIF
 cardinality_ several_))
 OBJ RANSOM_DEMAND_1
 BENF (SPECIF family_ ROBUSTINIANO_HABLO)
 TOPIC (SPECIF hostage_release ROBUSTINIANO_HABLO)
 date-1: 20/11/1999, (20/12/1999)
 date-2:

Move:GenericInformation (4.41)

The kidnappers will (possibly) send a ransom demand to the family of Robustiniano Hablo
about his release.

The NKRL software environment, see [10], is endowed with several tools de-
signed to facilitate the set up of large knowledge bases of NKRL annota-
tions/occurrences. For example, two different ‘step-wise’ programs – that differ
mainly with respect to the organization of their interface modules – both allow a pro-
gressive construction of the predicative and binding occurrences by answering a set of
interwoven queries. The two programs include a facility to accelerate the set up of the
occurrences by simply ‘adapting’ to the situation to be represented – e.g., by changing
some individuals or locations – ‘standard’ examples of well-formed predicative oc-
currences associated with the different templates. Another program that is particularly

312 G.P. Zarri

useful for experienced NKRL operators is a sort of ‘parser’ that takes as input a
Word/RTF file of NKRL structures represented in ‘external’ format (like that used in
Tables 1 and 2) and automatically produces the corresponding ‘internal’ format, i.e.,
the format to be concretely used for the querying/inferencing operations – this internal
format is exhaustively described in [10: Appendix A]. The interest of this program
consists in the possibility of making use of the usual Word editing facilities for gener-
ating quickly new ‘external’ NKRL files from the many external files concerning past
NKRL applications that already exist. Moreover, the software environment is already
configured for taking into account the possibility of a synthesis of NKRL structures
directly from Natural Language (NL) descriptions; however, this possibility is not
fully operational at present. Even if the theoretical principles for performing the syn-
thesis of NKRL-like structures from NL descriptions are very well understood, see,
e.g., [11, 12], NKRL’s designers think that the amount of manual post-editing opera-
tions to be executed on the outputs of the NL/NKRL ‘translation’ modules is still too
important to make these modules concretely useful. However, thanks to the Par-
menides project, progresses have been recently accomplished in this context along the
traditional MUC (Message Understanding Conferences) lines see, e.g., [13].

2.2 ‘Search Patterns’ and Low-Level Inference Procedures

The basic building block for all the NKRL querying and inference procedures is the
Fum, Filtering Unification Module, see also [4]. It takes as input specific NKRL data
structures called ‘search patterns’.

Search patterns can be considered as the NKRL counterparts of natural language
queries; they offer then the possibility of querying directly an NKRL knowledge base
of conceptual annotations. Formally, these patterns correspond to specialized/partially
instantiated templates pertaining to the HTemp hierarchy, where the ‘explicit vari-
ables’ that characterize the templates (vari, see Table 1a) have been replaced by
concepts/individuals compatible with the constraints imposed on these variables in
the original templates. In a search pattern, the concepts are used as ‘implicit vari-
ables’. When trying to unify a search pattern with the predicative occurrences of the
knowledge base, a concept can then match the individuals representing its own in-
stances and all its subsumed concepts in HClass with their own instances. The set of
predicative occurrences unified by a given search pattern constitute the answer to the
query represented by the pattern.

Note that the unification/filtering operations executed by Fum are ‘oriented’,
which means that all the terms used to build up a search pattern must be explicitly
found in the matched occurrences, either in an identical form (e.g., predicate and
roles), or as subsumed concepts or instances of the implicit variables. Additional
terms – roles, fillers and part of fillers – with respect to those explicitly declared in the
pattern can be freely found in the occurrences. Moreover, the unification of complex
fillers (expansions) built up making use of the AECS operators, see the previous Sec-
tion, must take into account the NKRL criteria for the creation of well-formed expan-
sions. This implies that, during the unification, the complex fillers of search pattern
and occurrences must be decomposed into tree structures labeled with the four opera-
tors, and that the unification of these tree structures must follow the constraints de-
fined by the ‘priority rule’ already mentioned, see again [2, 4]. The algorithmic struc-

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 313

ture of Fum is, eventually, quite complex, but this complexity is totally transparent for
the user, who is only required to specify in the search pattern the essential elements he
wants to retrieve in the occurrences, without being bothered, as in OWL-QL for ex-
ample, see [14], by the need of declaring ‘Must-Bind Variables’, ‘May-Bind Vari-
ables’, ‘Don’t-Bind Variables’, ‘Answer Patterns’, etc.

A simple example of search pattern, translating the query: “There is any informa-
tion in the system about violence events occurred during the year 1999?” is repro-
duced in Table 1c, producing the occurrence mod3.c5 (Table 1b) as one of the pos-
sible answers. Note that the two timestamps, date1 and date2 associated with the
pattern constitute now the ‘search interval’ used to limit the search for unification to
the slice of time that the user considers as appropriate to explore, see [3]. Note also
that the search pattern of Table 1c – as, by the way, the answer mod3.c5 of Table 1b
– derives from the template Produce:Violence (6.35) of Table 1a where all
the explicit variables vari have been replaced by HClass concepts (implicit vari-
ables) corresponding to some of the original constraints. As already stated, unification
is executed by assuming that a generic HClass concept (implicit variable, e.g., vio-
lence_ in 1c) included in the pattern can unify all its subsumed concepts (e.g.,
kidnapping_ in 1b) or instances (individuals) that are present in the correspond-
ing positions of the occurrences – this correspond to a semantic/conceptual ‘expan-
sion’ of the original query. For example, both INDIVIDUAL_PERSON_20 and
ROBUSTINIANO_HABLO have been registered in HClass as instances of indi-
vidual_person – specific term of human_being – at the moment of the coding
in NKRL terms of the corresponding news story. ‘Generic’ and ‘specific’ refer, obvi-
ously, to the structure of HClass. Because of this semantic/conceptual expansion of
the proposed pattern, we can define the process of search patterns unification as a first
level of inferencing of NKRL.

2.3 ‘Hypothesis’ Rules

We have already mentioned, in the ‘Introduction’, that the high-level inferencing
operations of NKRL correspond normally to the use of two complementary classes of
inference rules, hypotheses and transformations – other sorts of rules, e.g., ‘filtering’
rules, have been employed for particular applications, see [15] for some information
in this context. Execution of both hypotheses and transformations require the use of a
real InferenceEngine, having Fum as its core mechanism. To describe the
functioning of InferenceEngine in a ‘hypothesis’ environment we will make use
of a ‘standard’, very simple example that, at the difference of the complex hypotheses
proper to a terrorism context, see also next Sections, implies only two steps of reason-
ing and can be then described in some detail in a concise way.

Let us then suppose we have directly retrieved, thanks to an appropriate search
pattern, the occurrence conc2.c34, see Table 3a, which corresponds to the informa-
tion: “Pharmacopeia, an USA biotechnology company, has received 64,000,000 USA
dollars from the German company Schering in connection with a R&D activity”. We
will suppose, moreover, that this occurrence is not explicitly related with other occur-
rences in the base by second order elements (e.g., binding occurrences), see Section
2.1 above. Under these conditions, we can activate the InferenceEngine module,

314 G.P. Zarri

asking it to try to link up automatically the information found by Fum with other
information present in the base. If this is possible, this last information will represent,
in a way, a sort of ‘causal explanation’ of the information originally retrieved – i.e., in
our example, an ‘explanation’ of the money paid to Pharmacopeia by Schering. A rule
that fits our case is hypothesis h1 reproduced in Table 3b.

Table 3. An example of hypothesis rule

a)

conc2.c34) RECEIVE SUBJ (SPECIF PHARMACOPEIA_
 (SPECIF biotechnology_company USA_))
 OBJ (SPECIF money_ usa_dollar (SPECIF amount_
 64,000,000))
 SOURCE (SPECIF SCHERING_
 (SPECIF pharmaceutical_company GERMANY_))
 TOPIC r_and_d_activity
 date1 :
 date2 :

b)
HYPOTHESIS h1

premise :

RECEIVE SUBJ var1
 OBJ money_
 SOURCE var2

var1 = company_
var2 = human_being, company_

A company has received some money from another company or a physical person.

first condition schema (cond1) :

PRODUCE SUBJ (COORD var1 var2)
 OBJ var3
 BENF (COORD var1 var2)
 TOPIC (SPECIF process_ var4)

var3 = mutual_relationship, business_agreement
var4 = artefact_

The two parties mentioned in the premise have concluded an agreement about the creation
of some sort of ‘product’.

second condition schema (cond2) :

PRODUCE SUBJ var1
 OBJ var4
 MODAL var5
 CONTEXT var3

var5 = industrial_process, technological_process

The company that received the money has actually created the product mentioned in the
first condition schema.

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 315

From an algorithmic point of view, InferenceEngine works according to a
backward chaining approach with chronological backtracking, see, e.g., [16]. The
differences with respect to other applications of this approach (Mycin, PROLOG …)
are mainly linked with the complexity of the NKRL data structures that implies, after
a deadlock, the execution of difficult operations of restoration of the program envi-
ronment to return to the previous choice point. Four ‘environment variables’ are used:

• VALAFF (valeurs affectables in French), holds the values provisionally af-
fected to the variables vari of the three schemata of Table 3 (premise,
cond1 and cond2) that implement the reasoning steps of the hypothesis:
these values can be deleted after a backtracking operation;

• DESVAR holds the final values associated with the variables vari when the
successful processing of one of the reasoning schemata has been completed;

• RESTRICT holds all the constraints (HClass terms) associated with the vari-
ables vari of the different reasoning schemata: these constraints will be used
to build up systematically all the search patterns that can be derived from these
schemata, see below;

• OCCUR holds the list of the symbolic names of all the occurrences retrieved by
the search patterns derived from the reasoning schemata: the values bound to
vari that have been retrieved in these occurrences are used to build up the
VALAFF lists.

The first set of operations corresponds to the execution of the Exeprem sub-module
of InferenceEngine, and consists in trying to unify, using Fum, the premise of
the hypothesis, see Table 3b, and the event (the payment in our case, see
conc2.c34) to be ‘explained’ – more exactly, in trying to unify (using Fum) the
event and the different search patterns derived from the premise by systematically
substituting to the variables var1 and var2, see Table 1b, the associated con-
straints. As already stated, search pattern processed by Fum can only include implicit
variables (concepts). This first step allows then i) to verify that the hypothesis tested
is, in principle, suitable to ‘explain’ the particular event at hand, and ii) to obtain from
the external environment (the event, i.e., conc2.c34) some values for the premise
variables var1, var2. In our case, the premise variable var1 can only be substi-
tuted by the constraint company_; on the contrary, two substitutions, var2 =
human_being and var2 = company_ are possible for the variable var2. A
first search pattern will be then built up by substituting human_being for var2 (a
value human_being is provisionally associated with var2 in VALAFF), i.e., a
first unification with the event to explain will be tried by using a search pattern corre-
sponding to a payment done by an individual person instead of a company. This unifi-
cation obviously fails.

The engine then ‘backtracks’ making use of a second sub-module of Infer-
enceEngine, Reexec: Reexec is systematically used during the execution of a
hypothesis rule i) to backtrack when a deadlock occurs, and ii) to reconstruct, making
use of the environment variables, the data structures (environment) proper to the

316 G.P. Zarri

previous choice point. The association var2 = human_being is removed and,
using the constraint values stored in RESTRICT, the engine builds up a new pattern
making use now of the value var2 = company_, that will unify the value
SCHERING_ in conc2.c34. The engine can then continue the processing of the
hypothesis h1; the two values var1 = PHARMACOPEIA_ and var2 =
SCHERING_ will then be stored in DESVAR and passed to the first condition
schema (cond1), see Table 3b. The search patterns derived from this condition
schema – by taking into account the values already bound in DESVAR to var1 and
var2 and by replacing systematically, as usual, all the other variables with the asso-
ciated constraints – will be tested by a third sub-module of InferenceEngine,
Execond. This last is called whenever there exist conditions favourable for advanc-
ing in the hypothesis, in other words, for being able to process a new condition
schema. Exeprem and Execond perform then the forward traversal of the choice
tree, with Reexec being systematically called whenever the conditions for a back-
tracking exist. The difference between Exeprem and Execond consists mainly in
the fact that, in an Execond context, the unification of the search patterns derived
from the condition schemata is tested against the general knowledge base of predica-
tive occurrences to (try to) find possible unifications with these occurrences while, in
an Exeprem context, the unification concerns only the search patterns derived from
the premise and the (unique) starting occurrence.

As usual, many deadlocks are generated in the course of the Execond operations.
Some are due, as in the premise case, to the chronological utilization of the con-
straints. For example, when trying to make use of a pattern derived from cond1
where the variable var3 has been substituted by its first constraint mu-
tual_relationship, see Table 3b (and Figure 1), a failure will be generated and
Reexec will be invoked again. The occurrences we must retrieve in the knowledge
base about the relationships between Pharmacopeia and Schering concern, in fact,
possible sorts of commercial agreements between Pharmacopeia and Schering – e.g.,
r_and_d_agreement and sale_agreement, see below, both specific terms in
HClass of business_agreement (the second constraint on var3) – and not a
private arrangement like mutual_relationship. We will, eventually, find in the
base an instantiation of cond1 corresponding to an event of the form: “Pharmacopeia
and Schering have signed two agreements concerning the production by Pharma-
copeia of a new compound, COMPOUND_1”. The values associated with the variables
var3 (r_and_d_agreement and sale_agreement) and var4
(COMPOUND_1) in cond1 will then be used to create the search patterns derived
from cond2. It will then be possible to retrieve an occurrence corresponding to the
information: “In the framework of an R&D agreement, Pharmacopeia has actually
produced the new compound”, see [4] for more details. The global information re-
trieved through the execution of the hypothesis, see Table 4, can then supply a sort of
‘plausible explanation’ of the Schering’s payment: Pharmacopiea and Schering have
concluded some agreements for the production of a given compound, and this com-
pound has been effectively produced by Pharmacopeia.

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 317

2.4 ‘Transformation’ Rules

The ‘transformation rules’ are used to obtain a plausible answer from a repository of
predicative occurrences also in the absence of the explicitly requested information
(i.e., when a direct query formulated in Fum terms fails), by searching semantic affini-
ties between what is requested and what is really present in the repository. The princi-
ple employed consists in using these rules to automatically ‘transform’ the original
query (i.e., the original search pattern) into one or more different queries (patterns)
that are not strictly ‘equivalent’ but only ‘semantically close’ to the original one.

Table 4. Final results for hypothesis h1

The start occurrence :

 conc2.c34) RECEIVE SUBJ (SPECIF PHARMACOPEIA_
 (SPECIF biotechnology_company USA_))
 OBJ (SPECIF money_ usa_dollar
 (SPECIF amount_ 64,000,000))
 SOURCE (SPECIF SCHERING_
 (SPECIF pharmaceutical_company GERMANY_))
 TOPIC r_and_d_activity
 date1 :
 date2 :

 Pharmacopeia, an USA biotechnology company, has received 64,000,000 dollars by
 Schering, a German pharmaceutical company, in relation to R&D activities.

The result for level 1 :

 conc13.c3) PRODUCE SUBJ (COORD PHARMACOPEIA_ SCHERING_)
 OBJ (COORD r_and_d_agreement sale_agreement)
 BENF (COORD PHARMACOPEIA_ SCHERING_)
 TOPIC (SPECIF synthesis_
 (SPECIF COMPOUND_1 new_))
 date1 :
 date2 :

 Pharmacopeia and Schering have signed two agreements (have produced two agreements
 having themselves as beneficiaries) concerning the production of a new compound .

The result for level 2 :

 conc13.c7) PRODUCE SUBJ PHARMACOPEIA_
 OBJ COMPOUND_1
 MODAL biotechnology_process
 CONTEXT r_and_d_agreement
 date1 :
 date2 :

 In the framework of an R&D agreement, Pharmacopeia has actually produced the new
 compound .

318 G.P. Zarri

As a first example, let us suppose that, working in the context of a hypothetical
knowledge base of NKRL occurrences about university professors, we want to ask a
query like: “Who has lived in the United States”, even without an explicit representa-
tion of this fact in the base. If this last contains some information about the degrees
obtained by the professors, we can tell the user that, although we do not explicitly
know who lived in the States, we can nevertheless look for people having an Ameri-
can degree. This last piece of information, obtained by transformation of the original
query, would indeed normally imply that some time was spent by the professors in the
country, the United States, which issued their degree. To pass now to a MoD exam-
ple, suppose we ask: “Search for the existence of some links between ObL (a well-
known ‘terrorist’) and Abubakar Abdurajak Janjalani, the leader of the Abu Sayyaf
group” – the Abu Sayyaf group is one of the Muslim independence movements in
Southern Philippines. In the absence of a direct answer, the corresponding search
pattern can be transformed into: “Search for the attestation of the transfer of eco-
nomic/financial items between the two”, which could lead to retrieve this information:
“During 1998/1999, Abubakar Abdurajak Janjalani has received an undetermined
amount of money from ObL through an intermediate agent”.

From a formal point of view, transformation rules are made up of a left-hand side,
the ‘antecedent’ – i.e. the formulation, in search pattern format, of the ‘query’ to be
transformed – and one or more right-hand sides, the ‘consequent(s)’ – the NKRL
representation(s) of one or more queries (search patterns) that must be substituted for
the given one. A transformation rule can, therefore, be expressed as: A (antecedent,
left-hand side) B (consequent(s), right-hand side). The ‘transformation arrow’,
‘ ’, has a double meaning:

 operationally speaking, the arrow indicates the direction of the transformation:
the left-hand side A (the original search pattern) is removed and replaced by the
right-hand side B (one or more new search patterns);

 the logical meaning of the arrow is that the information obtained through B im-
plies (in a weak sense) the information we should have obtained from A.

Some formal details can be found in [4]. A representation of the previous ‘eco-
nomic/financial transfer’ transformation is given in Table 5. Note that the left-hand
side (antecedent) of this transformation corresponds to a partial instantiation of the
template (1.3112) Behave:FavourableConcreteMutual that is routinely
used to represent into NKRL format a (positive) mutual behaviour among two or
more entities. With respect now to the implementation details, the InferenceEn-
gine version to be used for transformations is quite identical to that used for execut-
ing the hypothesis rules. The sub-module Antexec (execution of the antecedent)
corresponds, in fact, to the Exeprem sub-module; Consexec (execution of the
consequent(s)) corresponds to Execond. Reexec is the same in the two versions.

 Note that many of the transformation rules used in NKRL are characterized by the
very simply format of Table 5 implying only one ‘consequent’ schema. An example
of ‘multi-consequent’ transformation is given by this specific MoD rule: “In a context
of ransom kidnapping, the certification that a given character is wealthy or has a pro-
fessional role can be substituted by the certification that i) this character has a tight
kinship link with another person (first consequent schema, conseq1), and ii) this

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 319

second person is a wealthy person or a professional people (second consequent
schema, conseq2)”. Let us suppose that, during the search for all the possible in-
formation linked with the Robustiniano Hablo's kidnapping, see occurrence
mod3.c5 in Table 1b above, we ask to the system whether Robustiano Hablo is
wealthy. In the absence of a direct answer, the system will automatically ‘transform’
the original query using the above ‘kinship’ rule. The result is given in Figure 3: we
do not know if Robustiano Hablo is wealthy, but we can say that his father is a
wealthy businessperson.

Table 5. A simple example of ‘transformation’ rule

 ‘economic/financial transfer’ transformation :

 t1) BEHAVE SUBJ (COORD1 var1 var2) RECEIVE SUBJ var2
 OBJ (COORD1 var1 var2) OBJ var4
 MODAL var3 SOURCE var1

 var1 = human_being_or_social_body
 var2 = human_being_or_social_body
 var3 = business_agreement, mutual_relationship
 var4 = economic/financial_entity

 To verify the existence of a relationship or of a business agreement between two (or more)
 persons, try to verify if one of these persons has received a ‘financial entity’ (e.g., money)
 from the other.

3 Integrating the Two Inferencing Modes of NKRL

As it appears from Table 3, a hypothesis rule corresponds to a fixed scenario formed
by a given number of reasoning steps. Since these steps are represented as partially
instantiated (standard) templates, and can then make use of variables and constraints,
their formulation is relatively flexible and easy to generalize. For example, thanks to
the variable var2 introduced in the premise of hypothesis h1 in Table 3 – and char-
acterized by the two constraints human_being and company_ – hypothesis h1
is valid in the context of money received either from a company or from private indi-
viduals; adding further variables and constraints, generalization can be even im-
proved. The reasoning steps to be executed are, however, still rigidly predefined.

To introduce a certain degree of fuzziness in the execution of hypotheses, and to
increase the probability of discovering implicit information during this execution, we
can make use of the concept of ‘transformation’. To be concretely executed, the rea-
soning steps of a hypothesis must, in fact, be reduced to search patterns and, at least in
principle, any NKRL search pattern can be automatically (and semi-randomly) con-
verted into a new search pattern by means of transformation rules. For this, it is suffi-
cient that the original pattern unifies the antecedent part of one of the transformation
rules present in the rule base of a given NKRL application. We know the importance
of exploiting in depth, in a terrorism context, all the possible knowledge bases of
known facts, see again [1]. Carrying out an exhaustive experimentation of the NKRL
inference tools in the framework of the MoD application of the Parmenides project

320 G.P. Zarri

has then required the modification of the standard InferenceEngine to imple-
ment the possibility of making use of transformations in a hypothesis context; we will
illustrate the characteristics of this work in the following Sections.

Fig. 3. InferenceEngine results corresponding to the application of the ‘kinship’ trans-
formation to the query about Robustiniano Hablo’s status

3.1 Strategies for the Execution of Transformations in a Hypothesis Context

Executing transformations in a hypothesis context means then taking a search pattern
built up by Execond during the processing of a hypothesis rule and ‘transforming’
it by executing the following operations:

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 321

 after having created a list of all the transformation rules stored in the rule base
of the system whose left hand side (antecedent) is generally congruent with the
general format of the current search pattern, find in this list one or more trans-
formation rules, if any, whose antecedents can actually unify the original pat-
tern;

 in this case, execute the transformation by substituting to the original search pat-
tern the new one formed using the right hand side (consequent) of the transfor-
mation, see Section 2.3 above;

 if the new search pattern is successful (i.e., if it can unify some occurrences of
the knowledge base), store in VALAFF (in the hypothesis environment) some
new values for the variables vari of the condition schema under execution.

Several strategies can be adopted with respect to i) the ‘number’ of transforma-
tions to be executed and ii) the ‘circumstances’ of their execution, see [17] for the
details. In the present version of the NKRL software, the user is allowed to select a
particular transforming strategy, see Figure 4. After having answered ‘Yes’ to the
question about the execution of ‘internal’ transformations (i.e., the execution of trans-
formation processes in a hypothesis context), on the left, she/he is asked whether
she/he wants to carry out ‘positive’ or ‘negative’ transformations. Conventionally,
executing ‘negative’ transformations means that the transformation process is acti-
vated only after the failure of a search pattern derived directly from a hypothesis
condition schema (i.e., a search pattern able to find an unification in the knowledge
base cannot be transformed); executing ‘positive’ transformations means that all the
search patterns derived directly from a hypothesis condition schema are transformed,
independently from the fact they have been successful or not. The last query on the
right of Figure 4 asks for the ‘depth’ of the transformation, i.e., it asks if a pattern that
is the result of an internal transformation can be transformed in turn, and how many
‘transformation steps’ are allowed.

Fig. 4. Parameters for internal transformations

3.2 The Correspondence Among Variables

The main ‘theoretical’ problem concerning the integration hypotheses/transformations
concerns the possibility of finding a correspondence between i) the variables, varh,
originally present in the (hypothesis) condition schema from which the search pattern
to transform has been derived and ii) those, totally disjoint, vart, that appear in the

322 G.P. Zarri

transformation rules to be used. We recall in fact that, see 2.3 above, the values found
by Fum for the variables varh of a given condition schema, and stored in VALAFF
and DESVAR, will be utilized to build up new search patterns from the subsequent
condition schemata in order to continue with the processing of the hypothesis. Using a
transformation must allow finding new sets of values for varh; the problem concerns
the fact that these new values will not refer directly to varh but to vart, the set of
variables proper to a transformation rule that, applied to one of the search patterns
derived from the original condition schemata, was successful. A correspondence
among varh and vart must then, in general, be found.

We must now operate a distinction between ‘global’ and ‘local’ variables. In the
context of the ‘integration’ problem, a ‘local’ variable is a variable that is used in only
one condition schema, condi, without appearing explicitly in any of the subsequent
condition schemata condi+1 … condn. A global variable, on the contrary, is a vari-
able that, after having been introduced in condi, is utilized again in at least one of
the following n-i condition schemata. Note that the variables introduced by the
premise are not interested by this distinction, given that the search patterns derived
from the premise are never submitted to the transformation operations: if these search
patterns cannot unify the starting occurrence, this means that the hypothesis is not
suitable for explaining this occurrence. To give an example, variables var3 and
var4 introduced the cond1 scheme of Table 3 are global, because they are re-
utilized in the cond2 scheme; var5 in cond2 is local, given that cond2 is the
last condition scheme of the hypothesis. We can now say that:

 If, independently from the fact that the search patterns derived from a condition
schema condi were successful or not, the new variables introduced by condi
are all local – i.e., none of them appear in the subsequent n-i condition
schemata – this means that, when transforming the search patterns derived from
condi, the new values for the variables varh of condi obtained through the
transformation process are not explicitly required in the processing of the sub-
sequent schemata of the hypothesis. In this case, if the original condi search
patterns failed, a successful transformation (a ‘negative transformation’, see the
previous Section) is nevertheless necessary to allow the hypothesis to continue.
If the condi search patterns were successful, the success of the transformation
(positive transformation) is only useful i) to guarantee, in an indirect way, that
condi is congruent with the data of the knowledge base and, more importantly,
ii) to introduce in the hypothesis’ answer some new information (occurrences)
to confirm/expand the ‘normal’ results.

 If some of the new variables introduced by condi are global – i.e., they appear
in at least one of the subsequent n-i condition schemata – associating new
values with these variables through a successful transformation process will be
absolutely mandatory to allow the hypothesis to continue in case of failure of
the original condi search patterns (negative transformation). In case of success
of these search patterns, the success of the transformation (positive transforma-
tion) will increase the possibility of constructing new search patterns from the
subsequent condition schemata making use of the new values for varh, enlarg-
ing considerably the search space and augmenting then the probability of obtain-

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 323

ing new interesting results. In both these cases, a correspondence between varh
(the variables of the original condition schema) and vart (the variables used in
the transformation) must necessarily be found.

To find the correspondence, the following guidelines must be used:

 To build up a generic search pattern sph from a condition schema, the variables
varh of this schema must be replaced (see Section 2.3 above) by some values
valh, concepts or individuals, corresponding to values obtained from the previ-
ous steps of the hypothesis or to constraints originally associated with varh
(these constraints are stored and managed in RESTRICThypo). The association
varh valh is stored in VALAFFhypo.

 When trying to use a transformation rule to modify sph, the transformation
variables vart included in the antecedent must be replaced in turn by some of
the constraints stored in RESTRICTtransfo to create a search pattern spt; the
values valt provisionally associated with vart are stored in VALAFFtransfo.
Fum can now be called to (try to) unify spt, the search pattern derived from the
antecedent, with sph, the search pattern (derived from a condition schema) to
transform. The unification is oriented from spt towards sph, i.e., sph plays the
role normally associated to a ‘predicative occurrence’ in the ‘standard’ Fum uni-
fication, see Section 2.2.

 If the unification succeeds, new values valt are associated with vart in the
transformation environment, vart valt, and stored in VALAFFtransfo. Since
the unification is successful (the data structures of sph and spt are fully congru-
ent), the values valt, retrieved on sph, correspond necessarily to the values
valh substituted to varh to create sph: these values have been stored in
VALAFFhypo. The equality valt = valh determined through the comparison of
the values stored in VALAFFtransfo and VALAFFhypo implies then the correspon-
dence vart = varh that we wanted to retrieve. It will then be possible i) to
transfer back to the original hypothesis environment the values bound to vart
through the unification of the search patterns derived from the consequent of the
transformation with the occurrences of the base, and ii) to associate these values
with varh to continue with the processing of the original hypothesis.

3.3 Some Examples

In Table 6b, we reproduce part of a typical ‘terrorism’ hypothesis used in the Par-
menides project, namely, the hypothesis that allows explaining, among other things, the
kidnapping of Robustiniano Hablo (Table 6a and Table 1 above) essentially in terms of:

 The victim has been kidnapped by a terrorist or separatist group (e.g., the Abu
Sayyaf Group).

 This group carries out a particular form of kidnapping, kidnapping for ransom.
 This form of kidnapping implies that the kidnapped person is either wealthy or a

VIP.
 It is then necessary to check then whether the victim is wealthy or is a VIP.

324 G.P. Zarri

Table 6. The ‘kidnapping for ransom’ hypothesis rule

a)
mod3.c5) PRODUCE SUBJ (SPECIF INDIVIDUAL_PERSON_20 weapon_wearing
 (SPECIF cardinality_ several_)):(VILLAGE_1)
 OBJ kidnapping_
 BENF ROBUSTINIANO_HABLO
 CONTEXT #mod3.c6

 date-1: 20/11/1999
 date-2:

b)
HYPOTHESIS h2

premise :

PRODUCE SUBJ var1
 OBJ kidnapping_
 BENF var2

var1 = human_being_or_social_body
var2 = individual_person

A human being has been kidnapped.

first condition schema (cond1) :

BEHAVE SUBJ var1
 MODAL member_of
 TOPIC var3

var1 = human_being_or_social_body
var3 = separatist_mouvement, terrorist_organization

The kidnappers are member of a separatist movement or of a terrorist organization.

second condition schema (cond2) :

PRODUCE SUBJ var3
 OBJ var4

var3 = separatist_mouvement, terrorist_organization
var4 = ransom_kidnapping

This organization performs ransom kidnapping.

…

Note that, to perform the last reasoning step when trying to explain the Robustin-

iano Hablo’s kidnapping, we must use, in a hypothesis context, the ‘two steps’ (multi-
consequent) ‘kinship’ transformation mentioned in Section 2.4 above, see also Figure
3. This fact is a further confirmation of the interest of coupling transformations and
hypotheses to broaden the explanatory power of hypotheses.

If we examine now cond2 in Table 6b – which translates the second reasoning
step mentioned above, i.e., “this group carries out kidnapping for ransom” – we can
see that the unique new variable introduced by this condition schema is var4 (var3

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 325

has been introduced in cond1); var4 is ‘local’, in the sense that it will not be used
in the subsequent condition schemata. We can now suppose to have, among the trans-
formations of the system, the transformation rule reproduced in Table 7b. Using the
‘normal’ version of InferenceEngine for transformations, the spt pattern
corresponding to the antecedent part of this rule will unify the sph pattern derived
from cond2 in Table 6b (see Table 7a and the upper part of Table 8), where var3
has been replaced by ABU_SAYYAF_GROUP – we can suppose that this value has
been obtained during the processing of cond1 – and var4 by the constraint ran-
som_kidnapping. The execution of the transformation will eventually produce,
from the consequent of the transformation, the search pattern reproduced in the lower
part of Table 8: we will call this type of pattern spf, ‘final pattern’, given that it will
be used to search for unifications within the knowledge base of predicative occur-
rences as in the ‘normal’ processing of hypotheses.

Table 7. A possible transformation rule for cond2 of h2

a)
search pattern sph derived from cond2 of Table 6b :

 PRODUCE
 SUBJ : ABU_SAYYAF_GROUP :
 OBJ : ransom_kidnapping :
 {}
 date1 :
 date2 :

The Abu Sayyaf group performs ransom kidnapping.

 b)
‘ransom kidnapping’ transformation :

 t2) PRODUCE SUBJ var1 RECEIVE SUBJ var1
 OBJ var2 OBJ money_
 SOURCE var3
 TOPIC (SPECIF
 captivity_freeing var4)

 var1 = separatist_mouvement, terrorist_organization
 var2 = ransom_kidnapping
 var3 = human_being
 var4 = human_being

To verify if a given organization performs ransom kidnapping, try to see this organization has re-
ceived some money for freeing from captivity one or more human being(s).

If this spf pattern can unify some information in the knowledge base, the success
of the transformation will only give rise to ‘variants’ of the ‘normal’ results, if any:
the evidence of the fact that the Abu Sayyaf Group carries out ransom kidnapping will
be reinforced by a specific information telling us that the Abu Sayyaf Group has re-
ceived some money for freeing people from captivity. In this case, no new values will
be introduced in the VALAFF and DESVAR variables of the h2 hypothesis, that will
then continue unchanged with the processing of cond3.

326 G.P. Zarri

Table 8. The original search pattern sph derived from cond2 and the final spf obtained
from the consequent of t2

 PRODUCE
 SUBJ : ABU_SAYYAF_GROUP :
 OBJ : ransom_kidnapping :
 {}
 date1 :
 date2 :

 RECEIVE
 SUBJ : ABU_SAYYAF_GROUP :
 OBJ : money_ :
 SOURCE : human_being :
 TOPIC : (SPECIF captivity_freeing human_being)
 {}
 date1 :
 date2 :

If we consider now the cond1 condition schema of hypothesis h2, see Table 6b,
we can see that the (unique) new variable introduced in this schema is var3: this one
is now ‘global’ given that it will be used in cond2 and the following condition
schemata. The transformations operating on the search patterns sph derived from
cond1 will then be able, in principle, to produce ‘new’ values for var3 to be stored
in VALAFF/DESVAR and to be used as they had been obtained through the ‘normal’
hypothesis operations – ‘new’ means values that can be different with respect to
those obtained via the usual procedures. At the difference then of the previous case
(‘local’ variables) – where the execution of successful transformations in a hypothesis
context could only lead to produce ‘locally’ (i.e., for the condition schema actually
transformed) some ‘variants’ of the standard outcomes – the success of the ‘internal’
transformations could now lead to the addition of totally new branches to the choice
tree, likely to produce new results for each of the condition schemata included be-
tween the transformation point and the end of the hypothesis.

A problem of ‘variable correspondence’ occurs now, to be solved according to the
‘guidelines’ illustrated at the end of the previous Section. Let us suppose to make use
of the transformation represented in Table 9: i.e., the membership in an organiza-
tion/political group/party can be verified checking, among other things, if the ‘mem-
ber’ receives some form of permanent or occasional ‘salary’ from the organization.

In this case, after having entered the specific transformation environment and hav-
ing activated the sub-module ANTEXEC (see Section 2.4 above) to execute, using
Fum, the unification between the search pattern spt derived from the antecedent of
t3 in Table 9 and the sph pattern corresponding to cond1 of h2, we are confronted
with the situation globally represented in Table 10. The top search pattern (a, sph)
is the pattern derived from cond1. Returning, in fact, to Table 6 above, we can see
that – because of the unification, in the original hypothesis environment and using
EXEPREM, of the premise of h2 with the starting occurrence mod3.c5 – the vari-
ables var1hypo and var2hypo introduced by the premise have taken, respec-
tively, the values INDIVIDUAL_PERSON_20 and ROBUSTINIANO_HABLO, as

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 327

reflected by the state of the environment variable VALAFFhypo in Table 10. The value
separatist_movement associated with var3hypo in VALAFFhypo, see Table 10,
derives from the operations performed by EXEPREM (in the hypothesis environ-
ment) to build up the search pattern (a, sph) from cond1. The pattern (b,
spt) has been built up by ANTEXEC (in the transformation environment) from the
antecedent part of the transformation t3 of Table 9; after the unification of (b,
spt) and (a, sph) – this unification, executed by Fum is, as already stated,
‘oriented’, in the sense that (a, sph) has a ‘predicative occurrence’ role – the vari-
ables var1transfo and var2transfo have, respectively, the values
INDIVIDUAL_PERSON_20 and separatist_movement, see the status of
VALAFF for the transformation environment in Table 10.

Table 9. A possible transformation rule for cond1 of h2

 ‘permanent or occasional salary’ transformation :

 t3) BEHAVE SUBJ var1 RECEIVE SUBJ var1
 MODAL member_of OBJ var3
 TOPIC var2 SOURCE var2

 var1 = human_being
 var2 = political_group/party
 var3 = irregular_payment, salary_

To verify if a person is a member of a given organization, try to see if, among other things, this person
receives a permanent or occasional salary from this organization.

According to the guidelines, from the comparison of the values affected to the
variables in the two versions of VALAFF, for hypotheses (VALAFFhypo) and trans-
formations (VALAFFtransfo) – this comparison is entrusted to Fum – we can deduce
that there is a correspondence between var3hypo and var2transfo. This fact will be
then registered into a CORRESP(ondence) table, see Table 11: only var3hypo is
of interest for the continuation of the hypothesis. After the (successful) unification of
(b, spt)/(a, sph), the processing of the transformation in its proper environ-
ment will continue, and the CONSEXEC sub-module will then build up the ‘final’
search pattern (c, spf) of Table 10 from the consequent of t3 of Table 9.

Let us suppose now that (c, spf) of Table 10 is able to unify (at least) a predi-
cative occurrence in the NKRL knowledge base. In this case, a value will be bound to
var2transfo; according to the information stored in CORRESP, see Table 11, this
value will also be bound to var3hypo and inserted into the VALAFF/DESVAR vari-
ables of the original hypothesis (h2) environment. If we assume now for generality’s
sake, see Section 3.1 above, that the strategy chosen for the execution of the ‘internal’
transformations is a ‘positive’ one – i.e., all the search pattern built up by EXECOND
from a condition can be transformed independently from the fact that these patterns
have been successful or not – four different cases can be envisaged.

328 G.P. Zarri

Table 10. Data structures and environment variables after the unification of the patterns derived
from cond1 and t3

 (a, sph) BEHAVE
 SUBJ : INDIVIDUAL_PERSON_20 :
 MODAL : member_of :
 TOPIC : separatist_movement
 {}
 date1 :
 date2 :

 VALAFFhypo (h2)
 var1hypo = INDIVIDUAL_PERSON_20
 var2hypo = ROBUSTINIANO_HABLO
 var3hypo = separatist_movement

 (b, spt) BEHAVE
 SUBJ : human_being :
 MODAL : member_of :
 TOPIC : political_group/party
 {}
 date1 :
 date2 :

 VALAFFtransfo (t3)
 var1transfo = INDIVIDUAL_PERSON_20
 var2transfo = separatist_movement

 (c, spf) RECEIVE
 SUBJ : INDIVIDUAL_PERSON_20 :
 OBJ : irregular_payment :
 SOURCE : separatist_movement :
 {}
 date1 :
 date2 :

Table 11. The CORRESP table for the example

original
condition schema:

variable name

value

internal
transformation:
variable name

var3

 separa-
tist_movement

var2

 In the first one, we suppose that var3hypo, before the execution of the transforma-
tion, was already linked with ABU_SAYYAF_GROUP – i.e., during the ‘normal’
execution of the hypothesis h2, a search pattern directly derived from the condi-
tion schema cond1 has been able to retrieve the information that
INDIVIDUAL_PERSON_20 (representing collectively the group of person that
has realized the kidnapping) was part of the Abu Sayyaf group. We suppose now
that the final transformed search pattern (c, spf) of Table 10 retrieves the in-

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 329

formation telling that INDIVIDUAL_PERSON_20 receives some form of occa-
sional salary from the Abu Sayyaf group: var2transfo is also bound to
ABU_SAYYAF_GROUP, and passing this value to var3hypo will add nothing
from the point of view of an ‘augmented’ development of the hypothesis. As in
the previous case of ‘local’ variables, the only real benefit linked with the execu-
tion of the transformation will be a confirmation of the links between
INDIVIDUAL_PERSON_20 and the Abu Sayyaf Group through the discovery
that the kidnappers receive also some money from this group.

 If we suppose now that, in the ‘normal’ execution of the h2, all the search patterns
directly derived from the condition schema cond1 failed, the possibility of obtain-
ing the value ABU_SAYYAF_GROUP for var3hypo via the transformation and the
passage through var2transfo permits, on the contrary, to continue with the proc-
essing of the hypothesis h2 otherwise irremediably destined to fail.

 We can suppose now that pattern (c, spf) of Table 10 is able to find an unifica-
tion within the knowledge base telling us that INDIVIDUAL_PERSON_20 receives
some form of occasional salary from another group, e.g., from the Moro Islamic Lib-
eration Front (another Muslim separatist group in the Southern Philippines) –
MORO_ISLAMIC_LIBERATION_FRONT will be then, in this case, the final value
bound to var2transfo after the unification with the occurrences of the base. If, as in
the previous case, var3hypo was ‘empty’ before the execution of the transformation,
activating the process of internal transformation will allow again continuing with the
processing of a hypothesis h2 otherwise destined to fail.

 Eventually, let us suppose that var2transfo takes the value
MORO_ISLAMIC_LIBERATION_FRONT while var3hypo is already bound
to ABU_SAYYAF_GROUP via the ‘normal’ hypothesis processing. This means,
in practice, that the group of kidnappers is linked in some way to both the Abu
Sayyaf and Moro Islamic Liberation Front groups. According to the correspon-
dence between var2transfo and var3hypo registered in CORRESP,
MORO_ISLAMIC_LIBERATION_FRONT must also be bound to var3hypo
and stored, accordingly, into the VALAFF/DESVAR variables of the h2 envi-
ronment. This new value will be used in the further processing of the hypothesis
in parallel with the original one (ABU_SAYYAF_GROUP), leading then (possi-
bly) to a totally new and particularly interesting set of results.

3.4 Additional Examples

From a practical point of view, the ‘positive’ strategy evoked in the previous Section
is not often employed, because it can be particularly exciting in terms of results, but
can also be very computationally expensive. To give only an example, let us suppose
to systematically adopt a ‘positive’ strategy for hypothesis h2 of Table 6 above: Fig-
ure 5 shows what happens at the level of the condition schema cond2 of h2 when,
after having directly found in a hypothesis context that a given terrorist
group/separatist movement practices ransom kidnapping, we ask to the system to
transform anyway the corresponding (successful) search patterns to retrieve the same
notion in an indirect way. The transformation shown in Figure 5 is – on the contrary
of transformation t2 used in Table 7 for the same condition schema cond2 of h2 – a

330 G.P. Zarri

‘two steps’ (multi-consequent) transformation, which is part of a (numerous) family
of transformations that can be all reduced to the same principle: to demonstrate that a
given terrorist/separatist group practices ransom kidnapping, we will try to find evi-
dence that members of this group are involved in actions related to ransom kidnap-
ping. In the case of Figure 5, we can then found, thanks to the transformation, an
additional complex indirect result saying that: i) the families of two hostages, Hadji
Abdul Basit Dimaporo and Hadji Samad Tutung, did not yet receive a request for
ransom from the four individual that have kidnapped their relatives, and ii) the four
kidnappers are known as members of the Abu Sayyaf group.

Fig. 5. Members of the Abu Sayyaf’s group practice ransom kidnapping

As a last example of use of transformations in a hypothesis context, let us suppose
that, after having clicked the ‘negative’ button, see the lower level of Figure 4, we
introduce ‘2’ as an answer to the request about the transformation's depth, Figure 4
right: we then accept that, after having obtained a new search pattern by the transfor-
mation process, this last can pass in turn through the transformation procedures. By

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 331

using a specific rule of the MoD application (very easy indeed to generalize), we want
now to retrieve the reasons that can have led a given INDIVIDUAL_PERSON_59 to
be injured by members of the Abu Sayyaf group. The rule suggests checking whether
the injured/killed person was a member of the Christian community in Southern Phil-
ippines: members of this community are, in fact, often the targets of Muslim separa-
tist’s attacks. This rule is a very simple one and implies three reasoning steps where
the last, cond3, consists in verifying the Christian community membership of the
offended person: this fact cannot be demonstrated directly for
INDIVIDUAL_PERSON_59. A first transformation to be used corresponds to the
following common sense argument: “A given person can be considered as a ‘member

Fig. 6. First level of transformation for the wounding of INDIVIDUAL_PERSON_59

at large’ of a given (e.g., Christian) community whether i) it can be proved that he has
a very strict employment relationship (e.g., a domestic_role) with a second per-
son (first consequent schema), and ii) this second person is known to be part of this
community (second consequent schema)”. The first step of this transformation can be
directly satisfied by retrieving that INDIVIDUAL_PERSON_59 is the chauffeur of
a catholic priest, Fr. Benjamin Inocencio, Figure 6; the second step requires, however,
to find out an explicit proof of the fact that this second person is a member of the
Christian community. Proving the membership is obtained by passing through a fur-
ther one step transformation: this will specify that being a roman catholic priest is
equivalent to being part of the (larger) Christian community, see Figure 7.

332 G.P. Zarri

Fig. 7. Second level of transformation for the wounding of INDIVIDUAL_PERSON_59

4 Some Remarks About the Software Solutions

Integrating the two versions, for hypotheses and transformations, of InferenceEn-
gine, corresponds to solve a complex ‘coroutine’ problem, where the main difficulty
is generated, as usual in NKRL, by the existence of complex data structures to be
managed, stored and reloaded. The integration can be implemented according to two
approaches:

 The first one is the classical ‘coroutine’ solution, where the ‘transformation’
version of the engine has the same priority of the ‘hypothesis’ version, and then
it starts its execution, as the latter one, from the main method of Infer-
enceEngine. The most important difficulty linked with this solution concerns
the fact that it should imply the complete execution of the transformation ver-
sion (the ‘internal’ version) until a result had been obtained, requiring then an
efficient way – Java's threads could be used in this context – to return to the hy-
pothesis version (the ‘external’ one). On the other hand, this solution should
also imply the fact of having a separate display (text output) for the results of
the ‘internal’ execution, with some difficulties then in co-ordinating them with
the displaying of the ‘external’ (hypothesis) results.

 The second approach, more manageable and simpler to implement, consists in
just integrating the InferenceEngine Java object corresponding to the ‘in-
ternal’ (transformation) version in the execution of the ‘external’ (hypothesis)
version. This allows the external hypothesis version of InferenceEngine –
which works now as the ‘main’ program – to run the internal version until it has

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 333

a result and to get back this result simply as a function execution return. This
approach allows implementing a ‘transparent’ running of the internal module,
and implies also the advantage of having the results of the ‘internal’ execution
naturally integrated with those displayed by the interface of the main (hypothe-
sis) version.

We have then chosen the second approach. Giving that, i) during the functioning
of InferenceEngine, Reexec is the only sub-module invoked in order to re-
construct the environment proper to a previous choice point and to allow then Exe-
cond to build up a new search pattern, and that ii) executing transformation opera-
tions – in our case, within a hypothesis context – amounts exactly to build up new
search patterns, we can conclude that only Reexec must be modified to implement
the ‘integration’ operations. In practice, during the execution of an internal transfor-
mation, Reexec will run the ‘internal’ (transformation) Java object until a result has
been found and returned: the internal object is then stopped, and it will wait for a new
Reexec call, producing other results if these are possible for the current transforma-
tion. For each call to Reexec, there will be then one internal module pending and
waiting for further results – each main program execution level will potentially have
an internal module object reference pointing to such object. From a Java program-
ming point of view, InferenceEngine includes now three different objects:
Hypothesis, Transformation and InternalTransformation. The first
two are practically unchanged. The InternalTransformation object is mod-
elled on the Transformation one: as already stated, it will run trying to find a
result and then, if successful, it will return this result; if this is not possible, it will
throw a NoMoreResultsException(). Reexec now executes first the In-
ternalTransformation code to get the next result and, if this is not possible,
catches the exception and continues its execution trying to build a new model for this
level. See [17] for more information and a detailed example.

5 Future Work

NKRL is a fully implemented language/environment. The software exists in two Java-
2 versions, an ORACLE-supported and a file-oriented one. The reasons that justify
the existence of a file-oriented version are mainly the following:

 The possibility of running a quite-complete version of the NKRL software on
machines unable to support a full-fledged version of ORACLE, e.g., low-range
portable computers.

 The possibility of accelerating the processing of the inference procedures – in
particular, the most complex inferencing operations involving a co-ordinated
running of ‘hypothesis’ and ‘transformation’ rules.

With reference to the last point, we can note that a certain ‘sluggishness’ of the in-
ference procedures in the standard ORACLE version – up to a few minutes to get a
result on both an AMD Athlon XP 2100+ 1.73 GHz with 512 MB of RAM and a
Pentium M 735 1.7 GHz with 1.0 GB of RAM when transformations and hypotheses
are running together; the answer is, on the contrary, almost immediate when the two

334 G.P. Zarri

classes of rules are processed separately – is not a default in itself, given that this
integrated processing must be conceived more as a powerful tool for discovering all
the possible implicit relationships among the data in the knowledge base than as the
support of a standard question-answering system. However, there are situations – e.g.,
demos – where an immediate answer can be of interest: few seconds are needed to get
a result in the file-oriented environment even when the most complex examples of
hypothesis/transformation combinations are running.

With respect now to the possible improvements, some of them are mainly of a
‘cosmetic’ nature. For example, many of the visualization features (including the
visualization of the results of the inference rules, see the Figures in the previous Sec-
tions) are inherited from ‘old’ software developed in previous European projects: they
are somewhat ‘ugly’ and do not do justice to the complexity and interest of the re-
sults. More substantial improvements will concern firstly:

 The addition of features that will allow querying the system in Natural Lan-
guage, i.e., features that will implement an automatic ‘translation’ of NL queries
into ‘external’ search patterns like that of Table 1c. Very encouraging experi-
mental results have already been obtained in this context thanks to the use of
shallow parsing techniques (like the AGFL grammar and lexicon, see [18]),
coupled with simple ‘production-like rules’ used to generate the templates and
with the help of the standard NKRL inference capabilities. With respect to the
more general and difficult problem of automatically producing occurrences and
annotations from NL descriptions of the original information, see the comments
at the end of Section 2.1.

 The introduction of optimisation techniques for the (basic) chronological back-
tracking of the NKRL InferenceEngine, in the style of the well-known
techniques developed in a Logic Programming context see, e.g., [19]. This
should allow, among other things, to align the processing time of the inference
rules in the ORACLE version with that of the file-oriented version of the soft-
ware, see above.

6 Comparison with Similar Approaches

Comparison of what expounded in the previous Sections with work accomplished in a
Semantic Web framework – Semantic Web (SW) is today a very popular paradigm in
the Knowledge Representation and Reasoning domain – is not very easy because of a
fundamental, ‘epistemological’ difference between the NKRL and the SW ap-
proaches.

Semantic Web languages like RDF and OWL are, in fact, inherently ‘binary’, in
the sense that, for these languages, a property can only be a binary relationship, link-
ing two individuals or an individual and a value. The (very scarce) proposals intended
to extend the SW languages to deal with n-ary relationships like those dealt with by
NKRL are not very convincing. For example, a recent working paper from the W3C
Semantic Web Best Practices and Deployment Working Group (SWBPD WG) about
defining n-ary relations for the SW languages, see [20], proposes some extensions to
the binary paradigm to allow the correct representation of ‘narratives’ like: “Christine
has breast tumor with high probability”, “Steve has temperature, which is high, but

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 335

failing” or “John buys a ‘Lenny the Lion’ book from books.Example.com for $15 as a
birthday gift”. The solutions proposed, really questionable, range from the introduc-
tion of fictitious ‘individuals’ to represent the n-ary relations to the rediscovery of
some semantic networks solutions of the seventies. The SW languages seem then to
be relegated, fundamentally, to the set up and management of static ‘ontologies’ of
concepts and individuals.

Unfortunately, this corresponds to leave aside a big amount of important, ‘eco-
nomically relevant’ information, which is buried into unstructured ‘narrative’ infor-
mation resources (or ‘narratives’): most of the corporate knowledge documents
(memos, policy statements, reports, minutes etc.), the news stories, the normative and
legal texts, the medical records, many intelligence messages, etc., as well as, in gen-
eral, a huge fraction of the information stored on the Web deal in fact with narratives.
In these ‘narrative documents’, or ‘narratives’, the main part of the information con-
tent consists in the dynamic description of ‘events’ that relate the real or intended
behaviour of some ‘actors’ (characters, personages, etc.) – as already stated, see Sec-
tion 2.1, the term ‘event’ is taken here in its more general meaning, covering also
strictly related notions like fact, action, state, situation etc. These actors try to attain a
specific result, experience particular situations, manipulate some (concrete or ab-
stract) materials, send or receive messages, buy, sell, deliver etc. Because of the ubiq-
uity of these ‘narrative’ resources, being able to represent in a general, accurate, and
effective way their semantic content – i.e., their key ‘meaning’ – is then both concep-
tually relevant and economically important, as demonstrated indirectly by the choice
of narrative examples to illustrate the SWBPD WG document mentioned before.

As we have seen in Section 2.1 above, templates and predicative occurrences in
NKRL are n-ary structures, and then suitable to take rationally into account narrative
information. Moreover, NKRL is also endowed with a limited set of second order
tools – mainly, binding occurrences and completive constructions, see again [2, 3, 4]
– for dealing with those ‘connectivity phenomena’ that arise when several elementary
events are connected through causality, goal, condition, indirect speech etc.

Given that the SW languages are ‘binary’ and NKRL is ‘n-ary’, also the tools
(rules) used to manage the data structures must be deeply different in the two ap-
proaches. Note that rules have not been included in the standard descriptions of SW
languages like RDF and OWL, and the whole SW rule domain seems to be still in a
very early state of development. Languages like RuleML [21], TRIPLE [22], and
SWRL [23, 24] – all based, roughly, on extensions of the inferential properties of
Horn clauses and Datalog to deal with OWL-like data structures, see also [25] in this
context – appear to be, for the time being, more limited experimental proposals than
implemented languages. With respect now to the existing, OWL-compatible reason-
ing tools like RACER [26], we must acknowledge that they are characterized by the
use of sound and complete inferencing algorithms supported by the description logics
(DL) theory [27]. Unfortunately, the reduced expressiveness of the DL main inferenc-
ing component, the automatic classification mechanism, linked with the reduced ex-
pressiveness of the underpinning data structures, confine their use to the execution of
low-level reasoning operations like concept consistency, concept subsumption, in-
stance testing etc., far away from the power of the unification-based, reasoning proce-
dures in the NKRL style. Nearly a printed page is needed to McGuinness and her
colleagues, see [28], to prove that, using the DAML+OIL definitions (DAML+OIL is

336 G.P. Zarri

the ancestor of OWL), it is possible to infer that ‘Red’ can be considered as a sort of
‘WineColor’. Under these conditions, it is not really surprising that, when confronted
with the need of developing real-time extensive applications in a Semantic Web con-
text, see [29], the developers feel compelled to use Jess as their rule-processing vehi-
cle, i.e., the re-implementation in Java terms of tools like CLIPS that go back to
OPS5, the seventies and the expert systems era.

For an approach to ‘inferencing’ similar to that described in this paper, it is then
better to look into the ‘semantic network’ domain – in the widest meaning of these
words, see [30] – given that systems dealing with n-ary data structures are relatively
frequent in this field.

Conceptual Graphs (CGs), see [31], are based on a powerful graph-based repre-
sentation scheme that can be used to represent n-ary relationships between complex
objects in a system. A conceptual graph is a finite, connected, bipartite graph that
makes use of two kinds of nodes, i.e., ‘concepts’ and ‘conceptual relations’; every arc
of a graph must link a conceptual relation to a concept. ‘Bipartite’ means that every
arc of a conceptual graph associates necessarily one concept with one conceptual
relation: it is not possible to have arcs that link concepts with concepts or relations
with relations. Very interesting work concerning indexing and querying of knowledge
bases of CGs making use of unification techniques can be found, e.g., in [32, 33];
Corbett [34] adds to the standard CGs unification procedures the possibility of dealing
with constraints, leading then to the implementation of unification algorithms very
similar to those used in Fum. We can make two remarks about CGs.

The first concerns the feeling that, in spite of the advanced unification-oriented
work mentioned in the previous paragraph, the existing CGs tools are still relatively
limited with respect to their inferencing capabilities. Some of them, like CharGer
[35], CGWorld [36] and DNAT [37], are essentially user interfaces and editing plat-
forms able to ‘produce’ CGs and CGs-based annotations – DNAT annotations and
graphs can be afterwards processed using standard tools like RDF and OWL. Others,
like the CoGITaNT [38] and Notio API libraries [39], allow the execution of some
standard canonical operations for creating and modifying graphs. CoGITaNT includes
also the possibility of implementing ‘if-then’ rules where antecedent and consequent
are in the form of conceptual graphs, and to make use of CGs-implemented con-
straints. The third version of the Amine Platform [40] allows, among other things, the
execution of some advanced information retrieval operations on a knowledge base in
the form of CGs. With respect now to Corese [41], this corresponds to an RDF engine
implemented in Conceptual Graphs terms that enables the processing of RDF and
RDFS statements within the CG formalism: in this case then, the original n-ary prop-
erties of CGs are downgraded to the usual binary, W3C-like ones.

The second remark is of a more general nature, and concerns what seems to be an
important difference between the NKRL- and CGs-based approaches to the set up and
managing of n-ary structures. Even if CGs have obviously the possibility of defining
general conceptual structures, similar to the NKRL templates, for describing narra-
tive-like phenomena, an exhaustive and authoritative list of these structures under the
form of ‘canonical graphs’ does not exist, and its construction seems have never been
planned. The practical consequence of this state of affairs seems to be the need, when-
ever a concrete application of CGs must be implemented, of defining anew a specific
list of canonical graphs for this particular application. On the contrary, a fundamental

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 337

characteristic of NKRL concerns the fact that its catalogue of ‘basic templates’ (coin-
ciding with HTemp and including 150 templates, very easy to extend and customize)
is in practice part and parcel of the definition of the language – as already stated at
length in this paper, all the different sorts of low-level or high-level inferential rules
used in NKRL are then obtained via the partial instantiation of the templates of the
catalogue. This approach could be very important for practical applications, and it
implies, in particular, that: i) a system-builder does not have to create himself the
structural and inferential knowledge needed to describe and exploit the events proper
to a large class of ‘narratives’ (in the most general meaning of this word); ii) it be-
comes easier to secure the reproduction or the sharing of previous results.

We will conclude this Section with the mention of CYC, see [42]: CYC concerns
one of the most controversial endeavours in the history of Artificial Intelligence.
Started in the early '80 as a MCC (Microelectronics and Computer Technology Cor-
poration, Texas, USA) project, it ended about 15 years later with the set up of an
enormous knowledge base containing about a million of hand-entered ‘logical asser-
tions’ including both simple statements of facts and rules about what conclusions can
be inferred if certain statements of facts are satisfied. The ‘upper level’ of the ontol-
ogy that structures the CYC knowledge base is now freely accessible on the Web, see
http://www.cyc.com/cyc/opencyc. A detailed analysis of the origins, developments
and motivations of CYC can be found in [43: 275-316]. The knowledge representa-
tion language of CYC, CycL, is an n-ary language see, e.g., [44].

It is evident that CYC is an amazing achievement from which the entire field of
knowledge representation has learned a great deal. However, it has also been severely
criticized: e.g., one of the main ‘technical’ criticisms addressed to CycL concerns its
uniform use of the same representation framework (substantially, a frame system
rewritten in logical form) to represent entities that are conceptually very different (the
‘uniqueness syndrome’). In NKRL, on the contrary, concepts are represented in the
(usual) binary way, elementary events (and general classes of events) like n-ary struc-
tures, connectivity phenomena as labelled lists with reified arguments, etc. An impor-
tant aspect to take into consideration about CYC concerns the fact that this system
defines itself as a ‘business’ product, commercialised by a ‘real’ company called
Cycorp: however, the real value of at least some of its ‘commercial’ results is still
fundamentally unclear. See, in this context, the comments of the evaluators about the
results of the recent HALO project, http://www.projecthalo.com/ halotempl.
asp?cid=2133, where it appears that CYC has ‘beaten’ organisms like SRI or Onto-
prise, but also that its real ‘understanding’ of the problems dealt with appear to be
extremely low. HALO concerns “… the development of a ‘Digital Aristotle’ – a
staged, long-term research and development initiative that aims to develop an applica-
tion capable of answering novel questions and solving advanced problems in a broad
range of scientific disciplines”.

7 Conclusion

In this paper, we have first mentioned the advantages that, for an in-depth exploitation
of ‘terrorism’ material, could derive from an integration of the two main inferencing
modes in NKRL, ‘hypotheses’ and ‘transformations’. We recall here that the ‘hypothe-

338 G.P. Zarri

sis rules’ allow to retrieve automatically from an NKRL knowledge base the informa-
tion that can supply a context or a causal explanation for some known event, and that
the ‘transformation rules’ facilitate in general the recovery of information from the
knowledge base by ‘adapting’, from a semantic point of view, query/queries that failed
to the real contents of this knowledge base. Allowing the use of transformations to mod-
ify the reasoning steps of hypotheses lets to ‘break’ the predefined scenarios proper to
the hypothesis rules and to augment then the possibility of discovering ‘implicit’ and
‘unexpected’ information within the knowledge base. We have then introduced the
conceptual problems linked with this integration and the solutions adopted, and then we
have shown briefly how these solutions could be implemented from a software point of
view. To emphasise the originality of the NKRL approach to the implementation and
use of high-level inferencing procedures, the paper ends up with some comparisons with
work done in a Semantic Web, Conceptual Graph and CYC context.

References

1. Popp, R., Armour, T., Senator, T., and Numrych, K.: Countering Terrorism Through In-
formation Technology. Communications of the ACM (2004) 47(3): 36-43

2. Zarri, G.P.: NKRL, a Knowledge Representation Tool for Encoding the ‘Meaning’ of
Complex Narrative Texts. Natural Language Engineering – Special Issue on Knowledge
Representation for Natural Language Processing in Implemented Systems (1997) 3: 231-
253

3. Zarri, G.P.: Representation of Temporal Knowledge in Events: The Formalism, and Its
Potential for Legal Narratives. Information & Communications Technology Law – Special
Issue on Models of Time, Action, and Situations (1998) 7: 213-241

4. Zarri, G.P.: A Conceptual Model for Representing Narratives. In: Innovations in Knowl-
edge Engineering. Advanced Knowledge International, Adelaide (2003)

5. Rinaldi, F., Dowdall, J., Hess, M., Ellman, J., Zarri, G.P., Persidis, A., Bernard, L., and
Karanikas, H.: Multilayer Annotations in PARMENIDES. In: Proceedings of the K-CAP
(International Conference on Knowledge Capture) 2003 Workshop on Knowledge
Markup and Semantic Annotation (October 25-26, 2003, Sanibel Island, Florida, USA)

6. Noy, F.N., Fergerson, R.W., and Musen, M.A.: The Knowledge Model of Protégé-2000:
Combining Interoperability and Flexibility. In: Knowledge Acquisition, Modeling, and
Management – Proceedings of the European Knowledge Acquisition Conference,
EKAW’2000. Springer-Verlag, Berlin Heidelberg New York (2000)

7. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., and Stein, L.A. (eds.): OWL Web Ontology Language Reference – W3C
Recommendation 10 February 2004. W3C (2004) (http://www.w3.org/TR/owl-ref/)

8. Horridge, M.: A Practical Guide to Building OWL Ontologies with the Protégé-OWL
Plugin (Edition 1.0). The University of Manchester, Manchester (2004)

9. Zarri, G.P.: NKRL Manual, Part II – The HClass and HTemp Hierarchies (Parmenides
IST Report). University of Paris IV/Sorbonne, Paris (2003)

10. Zarri, G.P., and Bernard, L.: NKRL Manual, Part III – The NKRL Software (Parmenides
IST Report). University of Paris IV/Sorbonne, Paris (2004)

11. Zarri, G.P.: Automatic Representation of the Semantic Relationships Corresponding to a
French Surface Expression. In: Proceedings of the First International Conference on Ap-
plied Natural Language Processing. Association for Computational Linguistics (ACL),
East Stroudsburg (PA) (1983)

Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses 339

12. Zarri, G.P. : Semantic Modeling of the Content of (Normative) Natural Language Docu-
ments. In: Actes des douzièmes journées internationales d’Avignon ‘Les systèmes experts
et leurs applications’ - Conférence spécialisée sur le traitement du langage naturel. EC2,
Nanterre (1992)

13. Black, W.J., Jowett, S., Mavroudakis, T., McNaught, J., Theodoulidis, B., Vasilakopoulos,
A., Zarri, G.P., and Zervanou, K.: Ontology-Enablement of a System for Semantic Anno-
tation of Digital Documents. In: Proceedings of the 4th International Workshop on Knowl-
edge Markup and Semantic Annotation (SemAnnot 2004) – 3rd International Semantic
Web Conference (November 8, 2004, Hiroshima, Japan).

14. Fikes, R., Hayes, P., and Horrocks, I.: OWL-QL – A Language for Deductive Query An-
swering on the Semantic Web. Web Semantics: Science, Services and Agents on the
World Wide Web (2004) 2: 19-29.

15. Bertino, E., Ferrari, E., Perego, A., and Zarri, G.P.: An Integrated Approach to Rating and
Filtering Web Content”. In: Innovations in Applied Artificial Intelligence: Proceedings of
the 18th International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, IEA/AIE 2005. Springer-Verlag, Berlin Heidelberg New
York (2005)

16. Clocksin, W.F., and Mellish, C.S.: Programming in PROLOG. Springer-Verlag, Berlin
Heidelberg New York (1981)

17. Zarri, G.P., and Bernard, L.: Using NKRL Inference Techniques To Deal With MoD ‘Ter-
rorism’ Information (Parmenides IST Report). University of Paris IV/Sorbonne, Paris
(2004)

18. Koster, C.H.A.: Head/Modifier Frames for Information Retrieval. In: Computational Lin-
guistics and Intelligent Text Processing: Proceedings of the 5th International Conference,
CICLing 2004. Springer-Verlag, Berlin Heidelberg New York (2004)

19. Clark, K.L., and Tärnlund, S.-A. (eds.): Logic Programming. Academic Press, London
(1982)

20. Noy, N., and Rector, A. (eds.): Defining N-ary Relations on the Semantic Web–W3C
Working Draft 24 May 2005. W3C (2005) (http://smi-web.stanford.edu/people/noy/
nAryRelations/n-aryRelations-2nd-WD.html).

21. Boley, H., Tabet, S., and Wagner, G.: Design Rationale of RuleML: A Markup Language
for Semantic Web Rules. In: Proceedings of SWWS'01, The First Semantic Web Working
Symposium. Stanford University, Stanford (2001)

22. Sintek, M., and Decker, S.: TRIPLE – A Query, Inference, and Transformation Language
for the Semantic Web. In: Proceedings of the First International Semantic Web Confer-
ence – ISWC 2002. Springer-Verlag, Berlin Heidelberg New York (2002)

23. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., and Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML – W3C Member
Submission 21 May 2004. W3C (2004) (http://www.w3.org/Submission/SWRL/)

24. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., and Tsarkov, D.: OWL Rules: A Pro-
posal and Prototype Implementation. Web Semantics: Science, Services and Agents on the
World Wide Web (2005) 3: 23-40

25. Rosati, R.: On the Decidability and Complexity of Integrating Ontologies and Rules: Web
Semantics: Science, Services and Agents on the World Wide Web (2005) 3: 61-73

26. Haarslev, V., and Möller, R.: Racer: A Core Inference Engine for the Semantic Web. In:
Proceedings of the 2nd International Workshop on Evaluation of Ontology Tools
(EON2003), Sanibel Island (October 20, 2003, Florida, USA)

27. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.F. (eds.):
The Description Logic Handbook. University Press, Cambridge (2003)

340 G.P. Zarri

28. McGuinness, D.L., Fikes, R., Hendler, J., and Stein, L.A.: DAML+OIL: An Ontology
Language for the Semantic Web. IEEE Intelligent Systems (2002) 17(5): 72-80

29. Hatala, M., Wakkary, R., and Kalantari, L.: Rules and Ontologies in Support of Real-Time
Ubiquitous Application. Web Semantics: Science, Services and Agents on the World
Wide Web (2005) 3: 5-22

30. Lehmann, F. (ed.): Semantic Networks in Artificial Intelligence. Pergamon Press, Oxford
(1992)

31. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations. Brooks Cole Publishing Co., Pacific Grove (CA) (1999)

32. Ellis, G.: Compiling Conceptual Graph. IEEE Transactions on Knowledge and Data Engi-
neering (1995) 7: 68-81

33. Willems, M.: Projection and Unification for Conceptual Graphs. In: Proceedings of the
Third International Conference on Conceptual Structures. Springer-Verlag, Berlin
Heidelberg New York (1995)

34. Corbett, D.: Reasoning and Unification over Conceptual Graphs, ICCS’95. Kluwer Aca-
demic/Plenum Publishers, New York (2003)

35. Delugach, H.S.: CharGer: A Graphical Conceptual Graph Editor. In: Proceedings of the
ICCS 2001 Workshop for Conceptual Graphs Tools (July 30, 2001, Stanford University,
USA, http://www.cs.nmsu.edu/~hdp/CGTools/proceedings/papers/CharGer.pdf)

36. Dobrev, P., Strupchaska, A., and Toutanova, K.: CGWorld-2001 – New Features and New
Directions. In: Proceedings of the ICCS 2001 Workshop for Conceptual Graphs Tools
(July 30, 2001, Stanford University, USA, http://www.cs.nmsu.edu/~hdp/CGTools/
proceedings/papers/CGWorld.pdf)

37. Uhlir, J., Kremen, P., and Kral, L.: DNAT – User’s Manual (Cipher IST Deliverable
D26/2). Czech Technical University, Prague (2004)

38. Genest, D., and Salvat: A Platform Allowing Typed Nested Graphs: How CoGITo Be-
came CoGITaNT. In: Proceedings of the Sixth International Conference on Conceptual
Structures, ICCS’98. Springer-Verlag, Berlin Heidelberg New York (1998)

39. Southey, F., and Linders, J. G.: Notio – A Java API for Conceptual Graphs. In: Proceed-
ings of the Seventh International Conference on Conceptual Structures, ICCS'99.
Springer-Verlag, Berlin Heidelberg New York (1999)

40. Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., and Rouleau, O.: Uses, Improvements and
Extensions of Prolog+CG: Case Studies. In: Proceedings of the Ninth International Con-
ference on Conceptual Structures, ICCS’01. Springer-Verlag, Berlin Heidelberg New
York (2001)

41. Corby, O., Dieng-Kuntz, R., and Faron-Zucker, C.: Querying the Semantic Web with the
CORESE Search Engine. In: Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI'2004). IOS Press, Amsterdam (2004)

42. Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., and Shepherd, M.: CYC: Toward Pro-
grams With Common Sense. Communications of the ACM (1990) 33(8): 30-49

43. Bertino, E., Catania, B., and Zarri, G.P.: Intelligent Database Systems. Addison-Wesley
and ACM Press, London (2001)

44. Ramachandran, D., Reagan, P., and Goolsbey, K.: First-Orderized ResearchCyc: Expres-
sivity and Efficiency in a Common-Sense Ontology. In: Papers from the AAAI Workshop
on Contexts and Ontologies: Theory, Practice and Applications (July 2005, Pittsburgh,
USA, http://www.cyc.com/doc/white_papers/folification.pdf).

Author Index

Boyd, Michael 69

Dahchour, Mohamed 1
Dalamagas, Theodore 250
Diamantini, Claudia 280

Euzenat, Jérôme 146

Huang, Xiaotong 110

Koufopoulos, Antonis 250

Li, Juanzi 110
Liang, Bangyong 110
Liu, I-Ting 250
Lu, Hongjun 110

Ma, Hui 213
McBrien, Peter 69

Panti, Maurizio 280
Pirotte, Alain 1
Potena, Domenico 280

Schewe, Klaus-Dieter 213
Shvaiko, Pavel 146
Siefkes, Christian 172
Siniakov, Peter 172

Tang, Jie 110
Thalheim, Bernhard 213
Theodoratos, Dimitri 250

Wang, Kehong 110
Winiwarter, Werner 35

Zarri, Gian Piero 304
Zhao, Jane 213
Zillner, Sonja 35
Zimányi, Esteban 1

	Frontmatter
	Generic Relationships in Information Modeling
	EMMA -- A Formal Basis for Querying Enhanced Multimedia Meta Objects
	Comparing and Transforming Between Data Models Via an Intermediate Hypergraph Data Model
	iASA: Learning to Annotate the Semantic Web
	A Survey of Schema-Based Matching Approaches
	An Overview and Classification of Adaptive Approaches to Information~Extraction
	View Integration and Cooperation in Databases, Data Warehouses and Web Information Systems
	Semantic Integration of Tree-Structured Data Using Dimension Graphs
	KDD Support Services Based on Data Semantics
	Integrating the Two Main Inference Modes of NKRL, Transformations and Hypotheses
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

